Genericity of the Fixed Point Set for the Infinite Population Genetic Algorithm

Author(s):  
Tomáš Gedeon ◽  
Christina Hayes ◽  
Richard Swanson
1995 ◽  
Vol 3 (3) ◽  
pp. 299-309 ◽  
Author(s):  
Alden H. Wright ◽  
Michael D. Vose

The infinite population simple genetic algorithm is a discrete dynamical system model of a genetic algorithm. It is conjectured that trajectories in the model always converge to fixed points. This paper shows that an arbitrarily small perturbation of the fitness will result in a model with a finite number of fixed points. Moreover, every sufficiently small perturbation of fimess preserves the finiteness of the fixed point set. These results allow proofs and constructions that require finiteness of the fixed point set. For example, applying the stable manifold theorem to a fixed point requires the hyperbolicity of the differential of the transition map of the genetic algorithm, which requires (among other things) that the fixed point be isolated.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao-Rong Kong ◽  
Lu-Chuan Ceng ◽  
Qamrul Hasan Ansari ◽  
Chin-Tzong Pang

We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.


2018 ◽  
Vol 18 (3) ◽  
pp. 285-287
Author(s):  
Xiaoyang Chen

AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.


Sign in / Sign up

Export Citation Format

Share Document