attack path
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 29)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-31
Author(s):  
Mengmeng Ge ◽  
Jin-Hee Cho ◽  
Dongseong Kim ◽  
Gaurav Dixit ◽  
Ing-Ray Chen

Resource constrained Internet-of-Things (IoT) devices are highly likely to be compromised by attackers, because strong security protections may not be suitable to be deployed. This requires an alternative approach to protect vulnerable components in IoT networks. In this article, we propose an integrated defense technique to achieve intrusion prevention by leveraging cyberdeception (i.e., a decoy system) and moving target defense (i.e., network topology shuffling). We evaluate the effectiveness and efficiency of our proposed technique analytically based on a graphical security model in a software-defined networking (SDN)-based IoT network. We develop four strategies (i.e., fixed/random and adaptive/hybrid) to address “when” to perform network topology shuffling and three strategies (i.e., genetic algorithm/decoy attack path-based optimization/random) to address “how” to perform network topology shuffling on a decoy-populated IoT network, and we analyze which strategy can best achieve a system goal, such as prolonging the system lifetime, maximizing deception effectiveness, maximizing service availability, or minimizing defense cost. We demonstrated that a software-defined IoT network running our intrusion prevention technique at the optimal parameter setting prolongs system lifetime, increases attack complexity of compromising critical nodes, and maintains superior service availability compared with a counterpart IoT network without running our intrusion prevention technique. Further, when given a single goal or a multi-objective goal (e.g., maximizing the system lifetime and service availability while minimizing the defense cost) as input, the best combination of “when” and “how” strategies is identified for executing our proposed technique under which the specified goal can be best achieved.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012020
Author(s):  
Jinwei Yang ◽  
Yu Yang

Abstract Intrusion intent and path prediction are important for security administrators to gain insight into the possible threat behavior of attackers. Existing research has mainly focused on path prediction in ideal attack scenarios, yet the ideal attack path is not always the real path taken by an intruder. In order to accurately and comprehensively predict the path information of network intrusion, a multi-step attack path prediction method based on absorbing Markov chains is proposed. Firstly, the node state transfer probability normalization algorithm is designed by using the nil posteriority and absorption of state transfer in absorbing Markov chain, and it is proved that the complete attack graph can correspond to absorbing Markov chain, and the economic indexes of protection cost and attack benefit and the index quantification method are constructed, and the optimal security protection policy selection algorithm based on particle swarm algorithm is proposed, and finally the experimental verification of the model in protection Finally, we experimentally verify the feasibility and effectiveness of the model in protection policy decision-making, which can effectively reduce network security risks and provide more security protection guidance for timely response to network attack threats.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zibo Wang ◽  
Yaofang Zhang ◽  
Zhiyao Liu ◽  
Xiaojie Wei ◽  
Yilu Chen ◽  
...  

With the convergence of IT and OT networks, more opportunities can be found to destroy physical processes by cyberattacks. Discovering attack paths plays a vital role in describing possible sequences of exploitation. Automated planning that is an important branch of artificial intelligence (AI) is introduced into the attack graph modeling. However, while adopting the modeling method for large-scale IT and OT networks, it is difficult to meet urgent demands, such as scattered data management, scalability, and automation. To that end, an automatic planning-based attack path discovery approach is proposed in this paper. At first, information of the attacking knowledge and network topology is formally represented in a standardized planning domain definition language (PDDL), integrated into a graph data model. Subsequently, device reachability graph partitioning algorithm is introduced to obtain subgraphs that are small enough and of limited size, which facilitates the discovery of attack paths through the AI planner as soon as possible. In order to further cope with scalability problems, a multithreading manner is used to execute the attack path enumeration for each subgraph. Finally, an automatic workflow with the assistance of a graph database is provided for constructing the PDDL problem file for each subgraph and traversal query in an interactive way. A case study is presented to demonstrate effectiveness of attack path discovery and efficiency with the increase in number of devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yazhuo Gao ◽  
Guomin Zhang ◽  
Changyou Xing

As an important deception defense method, a honeypot can be used to enhance the network’s active defense capability effectively. However, the existing rigid deployment method makes it difficult to deal with the uncertain strategic attack behaviors of the attackers. To solve such a problem, we propose a multiphase dynamic deployment mechanism of virtualized honeypots (MD2VH) based on the intelligent attack path prediction method. MD2VH depicts the attack and defense characteristics of both attackers and defenders through the Bayesian state attack graph, establishes a multiphase dynamic deployment optimization model of the virtualized honeypots based on the extended Markov’s decision-making process, and generates the deployment strategies dynamically by combining the online and offline reinforcement learning methods. Besides, we also implement a prototype system based on software-defined network and virtualization container, so as to evaluate the effectiveness of MD2VH. Experiments results show that the capture rate of MD2VH is maintained at about 90% in the case of both simple topology and complex topology. Compared with the simple intelligent deployment strategy, such a metric is increased by 20% to 60%, and the result is more stable under different types of the attacker’s strategy.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1295
Author(s):  
Hsiao-Chung Lin ◽  
Ping Wang ◽  
Wen-Hui Lin ◽  
Kuo-Ming Chao ◽  
Zong-Yu Yang

Distributed denial of service (DDoS) attacks often use botnets to generate a high volume of packets and adopt controlled zombies for flooding a victim’s network over the Internet. Analysing the multiple sources of DDoS attacks typically involves reconstructing attack paths between the victim and attackers by using Internet protocol traceback (IPTBK) schemes. In general, traditional route-searching algorithms, such as particle swarm optimisation (PSO), have a high convergence speed for IPTBK, but easily fall into the local optima. This paper proposes an IPTBK analysis scheme for multimodal optimisation problems by applying a revised locust swarm optimisation (LSO) algorithm to the reconstructed attack path in order to identify the most probable attack paths. For evaluating the effectiveness of the DDoS control centres, networks with a topology size of 32 and 64 nodes were simulated using the ns-3 tool. The average accuracy of the LS-PSO algorithm reached 97.06 for the effects of dynamic traffic in two experimental networks (number of nodes = 32 and 64). Compared with traditional PSO algorithms, the revised LSO algorithm exhibited a superior searching performance in multimodal optimisation problems and increased the accuracy in traceability analysis for IPTBK problems.


2021 ◽  
Vol 1955 (1) ◽  
pp. 012098
Author(s):  
Pengyu Sun ◽  
Hengwei Zhang ◽  
Chenwei Li

Author(s):  
Mrunalsinh Chawda ◽  
Dr. Priyanka Sharma ◽  
Mr. Jatin Patel

In Modern Web application directory traversal vulnerability that can potentially allow an attacker to view arbitrary files and some sensitive files. They can exploit identified vulnerabilities or misconfigurations to obtain root privileges. When building the web application, ensure that some arbitrary file is not publicly available via the production server. when an attacker can include. Traversal vulnerabilities this vulnerability exploits the dynamic file include a mechanism that exists in programming frameworks a local file inclusion happens when uncontrolled user input such as form values or headers for example are used to construct a file include paths. By exploiting directory traversal attacks in web servers, they can do anything and with chaining with code injection they can upload a shell into a web server and perform a website defacement attack. Path-traversal attacks take advantage of vulnerable Website parameters by including a URL reference to remotely hosted malicious code, allowing remote code execution and leads to privilege escalation attack.


2021 ◽  
pp. 1-14
Author(s):  
Shuang Wang ◽  
Lei Ding ◽  
He Sui ◽  
Zhaojun Gu

Cybersecurity risk assessment is an important means of effective response to network attacks on industrial control systems. However, cybersecurity risk assessment process is susceptible to subjective and objective effects. To solve this problem, this paper introduced cybersecurity risk assessment method based on fuzzy theory of Attack-Defense Tree model and probability cybersecurity risk assessment technology, and applied it to airport automatic fuel supply control system. Firstly, an Attack-Defense Tree model was established based on the potential cybersecurity threat of the system and deployed security equipment. Secondly, the interval probability of the attack path was calculated using the triangular fuzzy quantification of the interval probabilities of the attack leaf nodes and defensive leaf nodes. Next, the interval probability of the final path was defuzzified. Finally, the occurrence probability of each final attack path was obtained and a reference for the deployment of security equipment was provided. The main contributions of this paper are as follows: (1) considering the distribution of equipment in industrial control system, a new cybersecurity risk evaluation model of industrial control system is proposed. (2) The experimental results of this article are compared with other assessment technologies, and the trend is similar to that of other evaluation methods, which proves that the method was introduced in this paper is scientific. However, this method reduces the subjective impact of experts on cybersecurity risk assessment, and the assessment results are more objective and reasonable. (3) Applying this model to the airport oil supply automatic control system can comprehensively evaluate risk, solve the practical problems faced by the airport, and also provide an important basis for the cybersecurity protection scheme of the energy industry.


2021 ◽  
Vol 21 (1) ◽  
pp. 93-100
Author(s):  
Nam-Uk Kim ◽  
◽  
Dong-Gyu Lee ◽  
Jung-Ho Eom

Sign in / Sign up

Export Citation Format

Share Document