population genetic
Recently Published Documents


TOTAL DOCUMENTS

4537
(FIVE YEARS 940)

H-INDEX

105
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Versha Rohilla ◽  
Rajesh Kumar Yadav ◽  
Atman Poonia ◽  
Ravika Sheoran ◽  
Gita Kumari ◽  
...  

Mung bean [Vigna radiata (L.) Wilczek] is an important short-duration grain legume widely known for its nutritional, soil ameliorative, and cropping system intensification properties. This study aims at evaluating genetic diversity among mung bean genotypes and detecting genomic regions associated with various yield attributing traits and yellow mosaic disease (YMD) resistance by association mapping. A panel of 80 cultivars and advanced breeding lines was evaluated for 10 yield-related and YMD resistance traits during kharif (monsoon) and summer seasons of 2018–2019 and 2019–2020. A total of 164 genome-wide simple sequence repeat (SSR) markers were initially screened, out of which 89 were found polymorphic which generated 317 polymorphic alleles with an average of 3.56 alleles per SSR locus. The number of alleles at each locus varied from 2 to 7. The population genetic structure analysis grouped different genotypes in three major clusters and three genetically distinct subpopulations (SPs) (i.e., SP-1, SP-2, and SP-3) with one admixture subpopulation (SP-4). Both cluster and population genetic structure analysis categorized the advanced mung bean genotypes in a single group/SP and the released varieties in other groups/SPs, suggesting that the studied genotypes may have common ancestral history at some level. The population genetic structure was also in agreement with the genetic diversity analysis. The estimate of the average degree of linkage disequilibrium (LD) present at the genome level in 80 mung bean genotypes unveiled significant LD blocks. Over the four seasons, 10 marker-trait associations were observed significant for YMD and four seed yield (SY)-related traits viz., days to flowering, days to maturity, plant height, and number of pods per plant using the mixed linear model (MLM) method. These associations may be useful for marker-assisted mung bean yield improvement programs and YMD resistance.


2022 ◽  
Vol 14 (2) ◽  
pp. 70
Author(s):  
Jéssica S. Cardoso ◽  
Sâmela S. Mendes ◽  
Ana Maria Waldschmidt ◽  
Maria Aparecida Castellani ◽  
Iara S. Joachim-Bravo ◽  
...  

This study aimed at determining the population genetic structure of Mediterranean fruit flies (Ceratitis capitata) in North-eastern Brazil, so as to improve our understanding of the viability of the inter-simple sequences repeat (ISSR) markers in Brazilian populations, along with inferences on population genetic composition which can be used in management programs. For this, ISSR markers were used in groups collected from four municipalities in this region. Primers were polymorphic, revealing moderate expected heterozigosity, with 80% of the variation occurring within populations and moderate structure. Bayesian analysis revealed K = 3, consistent with pairwise FST and indicating low structure between Barra do Choça and Planalto, and moderate structure between Caraíbas and Planalto. Data indicated high diversity, suggesting two interpretations: the analyzed populations arose from a single population and are now under structuring processes, or populations had different origins, but are currently connected by gene flow. Thus, ISSR primers were affective in obtaining information about genetic structure of C. capitata populations in North-eastern Brazil, as evidenced by high polymorphism and separation or grouping of populations according to their allelic compositions. Furthermore, this paper provides useful information for understanding the genetic diversity, population structure and gene flow of C. capitata populations in this region and developing regional strategies for the control and management of the species.


2022 ◽  
Author(s):  
Marianne Bessette ◽  
Dave T. Ste‐Croix ◽  
Jacques Brodeur ◽  
Benjamin Mimee ◽  
Annie‐Ève Gagnon

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Liang Wang ◽  
Zhiqiang Zhai ◽  
Zhongxiang Zhu ◽  
Enrong Mao

To improve the path tracking accuracy of autonomous tractors in operation, an improved Stanley controller (IMP-ST) is proposed in this paper. The controller was applied to a two-wheel tractor dynamics model. The parameters of the IMP-ST were optimized by multiple-population genetic algorithm (MPGA) to obtain better tracking performance. The main purpose of this paper is to implement path tracking control on an autonomous tractor. Thus, it is significant to study this field because of smart agricultural development. According to the turning strategy of tractors in field operations, five working routes for tractors were designed, including straight, U, Ω, acute-angle and obtuse-angle routes. Simulation tests were conducted to verify the effectiveness of the proposed IMP-ST in tractor path tracking for all routes. The lateral root-mean-square (RMS) error of the IMP-ST was reduced by up to 36.84% and 48.61% compared to the extended Stanley controller and the original Stanley controller, respectively. The simulation results indicate that the IMP-ST performed well in guiding the tractor to follow all planned working routes. In particular, for the U and Ω routes, the two most common turning methods in tractor field operations, the path tracking performance of the IMP-ST was improved by 41.72% and 48.61% compared to the ST, respectively. Comparing and analyzing the e-Ψ and β-γ phase plane of the three controllers, the results indicate that the IMP-ST has the best control stability.


2022 ◽  
Author(s):  
Miguel Vallebueno-Estrada ◽  
Sonja Steindl ◽  
Vasilina Akulova ◽  
Julia Riefler ◽  
Lucyna Slusarz ◽  
...  

Reduced representation library approaches are still a valuable tool for breeding and population and ecological genomics, even with impressive increases in sequencing capacity in recent years. Unfortunately, current approaches only allow for multiplexing up to 384 samples. To take advantage of increased sequencing capacity, we present Multi-GBS, a massively multiplexable extension to Genotyping-by-Sequencing that is also optimized for large conifer genomes. In Norway Spruce, a highly repetitive 20Gbp diploid genome with high population genetic variation, we call over a million variants in 32 genotypes from three populations, two natural forest in the Alps and Bohemian Alps, and a managed population from southeastern Austria using the existing TASSEL GBSv2 pipeline. Metric MDS analysis of replicated genotypes shows that technical bias in resulting genotype calling is minimal and that populations cluster in biologically meaningful ways.


2022 ◽  
Author(s):  
Francisco E. Fontúrbel ◽  
Gloria B. Rodríguez‐Gómez ◽  
José I. Orellana ◽  
Jorge Cortés‐Miranda ◽  
Noemí Rojas‐Hernández ◽  
...  

2022 ◽  
Author(s):  
Luis A. Pastene ◽  
Mioko Taguchi ◽  
Aimee Lang ◽  
Mutsuo Goto ◽  
Koji Matsuoka

Sign in / Sign up

Export Citation Format

Share Document