A Novel Ordering-Based Greedy Bayesian Network Learning Algorithm on Limited Data

Author(s):  
Feng Liu ◽  
Fengzhan Tian ◽  
Qiliang Zhu
2021 ◽  
pp. 1-14
Author(s):  
Yong Chen ◽  
Tianbao Zhang ◽  
Ruojun Wang ◽  
Lei Cai

The failure of complex engineering systems is easy to lead to disastrous consequences. To prevent the failure, it is necessary to model complex engineering systems using probabilistic techniques with limited data which is a major feature of complex engineering systems. It is a good choice to perform such modeling using Bayesian network because of its advantages in probabilistic modeling. However, few Bayesian network structural learning algorithms are designed for complex engineering systems with limited data. Therefore, an algorithm for learning the Bayesian network structure of them should be developed. Based on the process of self-purification of water, a complex engineering system is segmented into three components according to the degree of difficulty in solving them. And then a Bayesian network learning algorithm with three components (TC), including PC algorithm, MIK algorithm which is originated by the paper through combining Mutual Information and K2 algorithm, and the Hill-Climbing method, is developed, i.e. TC algorithm. To verify its effectiveness, TC algorithm, K2 algorithm, and Max-Min Hill-Climbing are respectively used to learn Alarm network with different sizes of samples. The results imply that TC algorithm has the best performance. Finally, TC algorithm is applied to study tank spill accidents with 220 samples.


Sign in / Sign up

Export Citation Format

Share Document