Journal of Intelligent & Fuzzy Systems
Latest Publications


TOTAL DOCUMENTS

8574
(FIVE YEARS 4730)

H-INDEX

53
(FIVE YEARS 21)

Published By Ios Press

1875-8967, 1064-1246

2022 ◽  
pp. 1-32
Author(s):  
Dongmei Wei ◽  
Yuan Rong ◽  
Harish Garg

Teaching quality evaluation (TQE) can not only improve teachers’ teaching skills, but also provide an important reference for school teaching management departments to formulate teaching reform measures and strengthen teaching management. TQE is a process of grading and ranking a given teachers based on the comprehensive consideration of multiple evaluation criteria by expert. The Maclaurin symmetric mean (MSM), as a powerful aggregation function, can capture the correlation among multiple input data more efficient. Although multitude weighted MSM operators have been developed to handle the Pythagorean fuzzy decision issues, these above operators do not possess the idempotency and reducibility during the procedure of information fusion. To conquer these defects, we present the Pythagorean fuzzy reducible weighted MSM (PFRWMSM) operator and Pythagorean fuzzy reducible weighted geometric MSM (PFRWGMSM) operator to fuse Pythagorean fuzzy assessment information. Meanwhile, several worthwhile properties and especial cases of the developed operators are explored at length. Afterwards, we develop a novel Pythagorean fuzzy entropy based upon knowledge measure to ascertain the weights of attribute. Furthermore, an extended weighted aggregated sum product assessment (WASPAS) method is developed by combining the PFRWMSM operator, PFRWGMSM operator and entropy to settle the decision problems of unknown weight information. The efficiency of the proffered method is demonstrated by a teaching quality evaluation issue, as well as the discussion of sensitivity analysis for decision outcomes. Consequently, a comparative study of the presented method with the extant Pythagorean fuzzy approaches is conducted to display the superiority of the propounded approach.


2022 ◽  
pp. 1-23
Author(s):  
Zeeshan Ali ◽  
Tahir Mahmood ◽  
Kifayat Ullah ◽  
Ronnason Chinram

The major contribution of this analysis is to analyze the confidence complex q-rung orthopair fuzzy weighted averaging (CCQROFWA) operator, confidence complex q-rung orthopair fuzzy ordered weighted averaging (CCQROFOWA) operator, confidence complex q-rung orthopair fuzzy weighted geometric (CCQROFWG) operator, and confidence complex q-rung orthopair fuzzy ordered weighted geometric (CCQROFOWG) operator and invented their feasible properties and related results. Future more, under the invented operators, we diagnosed the best crystalline solid from the family of crystalline solids with the help of the opinion of different experts in the environment of decision-making strategy. Finally, to demonstrate the feasibility and flexibility of the invented works, we explored the sensitivity analysis and graphically shown of the initiated works.


2022 ◽  
pp. 1-10
Author(s):  
Zhi Wang ◽  
Shufang Song ◽  
Hongkui Wei

When solving multi-objective optimization problems, an important issue is how to promote convergence and distribution simultaneously. To address the above issue, a novel optimization algorithm, named as multi-objective modified teaching-learning-based optimization (MOMTLBO), is proposed. Firstly, a grouping teaching strategy based on pareto dominance relationship is proposed to strengthen the convergence efficiency. Afterward, a diversified learning strategy is presented to enhance the distribution. Meanwhile, differential operations are incorporated to the proposed algorithm. By the above process, the search ability of the algorithm can be encouraged. Additionally, a set of well-known benchmark test functions including ten complex problems proposed for CEC2009 is used to verify the performance of the proposed algorithm. The results show that MOMTLBO exhibits competitive performance against other comparison algorithms. Finally, the proposed algorithm is applied to the aerodynamic optimization of airfoils.


Author(s):  
G. Muhiuddin ◽  
J. Catherine Grace John ◽  
B. Elavarasan ◽  
K. Porselvi ◽  
D. Al-Kadi

 The notions of hybrid ideals and k-hybrid ideals in a ternary semiring are introduced in this paper, and a substantial amount of effort has been made to study some of their features. In terms of characteristic function, we show some properties of k-hybrid ideals and give some characterizations of hybrid intersection with respect to these k-hybrid ideals. Finally, results based on a k-hybrid ideal’s homomorphic hybrid preimage are provided. With respect to k-hybrid ideals, we give certain characterizations of hybrid intersection.


2022 ◽  
pp. 1-16
Author(s):  
Zhang Tingting ◽  
Tang Zhenpeng ◽  
Zhan Linjie ◽  
Du Xiaoxu ◽  
Chen Kaijie

An important feature of the outbreak of systemic financial risk is that the linkage and contagion of risk amongst the various sub-markets of the financial system have increased significantly. In addition, research on the prediction of systemic financial risk plays a significant role in the sustainable development of the financial market. Therefore, this paper takes China’s financial market as its research object, considers the risks co-activity among major financial sub-markets, and constructs a financial composite indicator of systemic stress (CISS) for China, describing its financial systemic stress based on 12 basic indicators selected from the money market, bond market, stock market, and foreign exchange market. Furthermore, drawing on the decomposition and integration technology in the TEI@I complex system research methodology, this paper introduces advanced variational mode decomposition (VMD) technology and extreme learning machine (ELM) algorithms, constructing the VMD-DE-ELM hybrid model to predict the systemic risk of China’s financial market. According to e RMSE , e MAE , and e MAPE , the prediction model’s multistep-ahead forecasting effect is evaluated. The empirical results show that the China’s financial CISS constructed in this paper can effectively identify all kinds of risk events in the sample range. The results of a robustness test show that the overall trend of China’s financial CISS and its ability to identify risk events are not affected by parameter selection and have good robustness. In addition, compared with the benchmark model, the VMD-DE-ELM hybrid model constructed in this paper shows superior predictive ability for systemic financial risk.


2022 ◽  
pp. 1-29
Author(s):  
Tahir Mahmood ◽  
Izatmand ◽  
Zeeshan Ali ◽  
Thammarat Panityakul

In the real decision process, an important problem is how to express the attribute value more efficiently and accurately. In the real world, because of the complexity of decision-making problems and the fuzziness of decision-making environments, it is not enough to express attribute values of alternatives by exact values. For this managing with such sorts of issues, the principle of Linear Diophantine uncertain linguistic set is a valuable and capable technique to manage awkward and inconsistent information in everyday life problems. In this manuscript, we propose the original idea of Linear Diophantine uncertain linguistic set and elaborated their essential laws. Additionally, to determine the association among any numbers of attributes, we elaborated the Linear Diophantine uncertain linguistic arithmetic Heronian mean operator, Linear Diophantine uncertain linguistic weighted arithmetic Heronian mean operator, Linear Diophantine uncertain linguistic geometric Heronian mean operator, Linear Diophantine uncertain linguistic weighted geometric Heronian mean operator, and their properties are also discovered. By using these operators, we utilize the multi-attribute decision-making procedure by using elaborated operators. To determine the consistency and validity of the elaborated operators, we illustrate some examples by using explored operators. Finally, the superiority and comparative analysis of the elaborated operators with some existing operators are also determined and justified with the help of a graphical point of view.


2022 ◽  
pp. 1-15
Author(s):  
E. Ammar ◽  
A. Al-Asfar

In real conditions, the parameters of multi-objective nonlinear programming (MONLP) problem models can’t be determined exactly. Hence in this paper, we concerned with studying the uncertainty of MONLP problems. We propose algorithms to solve rough and fully-rough-interval multi-objective nonlinear programming (RIMONLP and FRIMONLP) problems, to determine optimal rough solutions value and rough decision variables, where all coefficients and decision variables in the objective functions and constraints are rough intervals (RIs). For the RIMONLP and FRIMONLP problems solving methodology are presented using the weighting method and slice-sum method with Kuhn-Tucker conditions, We will structure two nonlinear programming (NLP) problems. In the first one of this NLP problem, all of its variables and coefficients are the lower approximation (LAI) it’s RIs. The second NLP problems are upper approximation intervals (UAI) of RIs. Subsequently, both NLP problems are sliced into two crisp nonlinear problems. NLP is utilized because numerous real systems are inherently nonlinear. Also, rough intervals are so important for dealing with uncertainty and inaccurate data in decision-making (DM) problems. The suggested algorithms enable us to the optimal solutions in the largest range of possible solution. Finally, Illustrative examples of the results are given.


Author(s):  
P. Vijayalakshmi ◽  
K. Muthumanickam ◽  
G. Karthik ◽  
S. Sakthivel

Adenomyosis is an abnormality in the uterine wall of women that adversely affects their normal life style. If not treated properly, it may lead to severe health issues. The symptoms of adenomyosis are identified from MRI images. It is a gynaecological disease that may lead to infertility. The presence of red dots in the uterus is the major symptom of adenomyosis. The difference in the extent of these red dots extracted from MRI images shows how significant the deviation from normality is. Thus, we proposed an entroxon-based bio-inspired intelligent water drop back-propagation neural network (BIWDNN) model to discover the probability of infertility being caused by adenomyosis and endometriosis. First, vital features from the images are extracted and segmented, and then they are classified using the fuzzy C-means clustering algorithm. The extracted features are then attributed and compared with a normal person’s extracted attributes. The proposed BIWDNN model is evaluated using training and testing datasets and the predictions are estimated using the testing dataset. The proposed model produces an improved diagnostic precision rate on infertility.


2022 ◽  
pp. 1-11
Author(s):  
Hooshang Kheirollahi ◽  
Mahfouz Rostamzadeh ◽  
Soran Marzang

Classic data envelopment analysis (DEA) is a linear programming method for evaluating the relative efficiency of decision making units (DMUs) that uses multiple inputs to produce multiple outputs. In the classic DEA model inputs and outputs of DMUs are deterministic, while in the real world, are often fuzzy, random, or fuzzy-random. Many researchers have proposed different approaches to evaluate the relative efficiency with fuzzy and random data in DEA. In many studies, the most productive scale size (mpss) of decision making units has been estimated with fuzzy and random inputs and outputs. Also, the concept of fuzzy random variable is used in the DEA literature to describe events or occurrences in which fuzzy and random changes occur simultaneously. This paper has proposed the fuzzy stochastic DEA model to assess the most productive scale size of DMUs that produce multiple fuzzy random outputs using multiple fuzzy random inputs with respect to the possibility-probability constraints. For solving the fuzzy stochastic DEA model, we obtained a nonlinear deterministic equivalent for the probability constraints using chance constrained programming approaches (CCP). Then, using the possibility theory the possibilities of fuzzy events transformed to the deterministic equivalents with definite data. In the final section, the fuzzy stochastic DEA model, proposed model, has been used to evaluate the most productive scale size of sixteen Iranian hospitals with four fuzzy random inputs and two fuzzy random outputs with symmetrical triangular membership functions.


2022 ◽  
pp. 1-12
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Samad Wali ◽  
Sultan Ahmad ◽  
Zafar Ali ◽  
...  

Artificial intelligence (AI) based computer-aided diagnostic (CAD) systems can effectively diagnose critical disease. AI-based detection of breast cancer (BC) through images data is more efficient and accurate than professional radiologists. However, the existing AI-based BC diagnosis methods have complexity in low prediction accuracy and high computation time. Due to these reasons, medical professionals are not employing the current proposed techniques in E-Healthcare to effectively diagnose the BC. To diagnose the breast cancer effectively need to incorporate advanced AI techniques based methods in diagnosis process. In this work, we proposed a deep learning based diagnosis method (StackBC) to detect breast cancer in the early stage for effective treatment and recovery. In particular, we have incorporated deep learning models including Convolutional neural network (CNN), Long short term memory (LSTM), and Gated recurrent unit (GRU) for the classification of Invasive Ductal Carcinoma (IDC). Additionally, data augmentation and transfer learning techniques have been incorporated for data set balancing and for effective training the model. To further improve the predictive performance of model we used stacking technique. Among the three base classifiers (CNN, LSTM, GRU) the predictive performance of GRU are better as compared to individual model. The GRU is selected as a meta classifier to distinguish between Non-IDC and IDC breast images. The method Hold-Out has been incorporated and the data set is split into 90% and 10% for training and testing of the model, respectively. Model evaluation metrics have been computed for model performance evaluation. To analyze the efficacy of the model, we have used breast histology images data set. Our experimental results demonstrated that the proposed StackBC method achieved improved performance by gaining 99.02% accuracy and 100% area under the receiver operating characteristics curve (AUC-ROC) compared to state-of-the-art methods. Due to the high performance of the proposed method, we recommend it for early recognition of breast cancer in E-Healthcare.


Sign in / Sign up

Export Citation Format

Share Document