Discrete Duality for Relation Algebras and Cylindric Algebras

Author(s):  
Ewa Orłowska ◽  
Ingrid Rewitzky
2000 ◽  
Vol 65 (2) ◽  
pp. 857-884 ◽  
Author(s):  
Gábor Sági

AbstractHere we investigate the classes of representable directed cylindric algebras of dimension α introduced by Németi [12]. can be seen in two different ways: first, as an algebraic counterpart of higher order logics and second, as a cylindric algebraic analogue of Quasi-Projective Relation Algebras. We will give a new, “purely cylindric algebraic” proof for the following theorems of Németi: (i) is a finitely axiomatizable variety whenever α ≥ 3 is finite and (ii) one can obtain a strong representation theorem for if one chooses an appropriate (non-well-founded) set theory as foundation of mathematics. These results provide a purely cylindric algebraic solution for the Finitization Problem (in the sense of [11]) in some non-well-founded set theories.


2001 ◽  
Vol 66 (1) ◽  
pp. 207-224 ◽  
Author(s):  
Vera Stebletsova ◽  
Yde Venema

AbstractWith each projective geometry we can associate a Lyndon algebra. Such an algebra always satisfies Tarski's axioms for relation algebras and Lyndon algebras thus form an interesting connection between the fields of projective geometry and algebraic logic. In this paper we prove that if G is a class of projective geometries which contains an infinite projective geometry of dimension at least three, then the class L(G) of Lyndon algebras associated with projective geometries in G has an undecidable equational theory. In our proof we develop and use a connection between projective geometries and diagonal-free cylindric algebras.


2002 ◽  
Vol 67 (1) ◽  
pp. 197-213 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractWe confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language ℒ with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which may occur arbitrarily many times), X has a proof containing exactly α + 1 variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987.


2001 ◽  
Vol 112 (2-3) ◽  
pp. 225-266 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

1980 ◽  
Vol 45 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Roger Maddux

There is no algorithm for determining whether or not an equation is true in every 3-dimensional cylindric algebra. This theorem completes the solution to the problem of finding those values of α and β for which the equational theories of CAα and RCAβ are undecidable. (CAα and RCAβ are the classes of α-dimensional cylindric algebras and representable β-dimensional cylindric algebras. See [4] for definitions.) This problem was considered in [3]. It was known that RCA0 = CA0 and RCA1 = CA1 and that the equational theories of these classes are decidable. Tarski had shown that the equational theory of relation algebras is undecidable and, by utilizing connections between relation algebras and cylindric algebras, had also shown that the equational theories of CAα and RCAβ are undecidable whenever 4 ≤ α and 3 ≤ β. (Tarski's argument also applies to some varieties K ⊆ RCAβ with 3 ≤ β and to any variety K such that RCAα ⊆ K ⊆ CAα and 4 ≤ α.)Thus the only cases left open in 1961 were CA2, RCA2 and CA3. Shortly there-after Henkin proved, in one of Tarski's seminars at Berkeley, that the equational theory of CA2 is decidable, and Scott proved that the set of valid sentences in a first-order language with only two variables is recursive [11]. (For a more model-theoretic proof of Scott's theorem see [9].) Scott's result is equivalent to the decidability of the equational theory of RCA2, so the only case left open was CA3.


2001 ◽  
Vol 112 (2-3) ◽  
pp. 267-297 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

1997 ◽  
Vol 62 (1) ◽  
pp. 225-279 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

AbstractWe consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finte relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an algebra is ω-categorical. We have a simple proof that the perfect extension of a representable relation algebra is completely representable.An important open problem from algebraic logic is addressed by devising another two-player game, and using it to derive equational axiomatisations for the classes of all representable relation algebras and representable cylindric algebras.Other instances of this approach are looked at, and include the step by step method.


Sign in / Sign up

Export Citation Format

Share Document