cylindric algebra
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2016 ◽  
Vol 81 (3) ◽  
pp. 1069-1086
Author(s):  
CHARLES C. PINTER

AbstractThe Stone representation theorem was a milestone for the understanding of Boolean algebras. From Stone’s theorem, every Boolean algebra is representable as a field of sets with a topological structure. By means of this, the structural elements of any Boolean algebra, as well as the relations between them, are represented geometrically and can be clearly visualized. It is no different for cylindric algebras: Suppose that ${\frak A}$ is a cylindric algebra and ${\cal S}$ is the Stone space of its Boolean part. (Among the elements of the Boolean part are the diagonal elements.) It is known that with nothing more than a family of equivalence relations on ${\cal S}$ to represent quantifiers, ${\cal S}$ represents the full cylindric structure just as the Stone space alone represents the Boolean structure. ${\cal S}$ with this structure is called a cylindric space.Many assertions about cylindric algebras can be stated in terms of elementary topological properties of ${\cal S}$. Moreover, points of ${\cal S}$ may be construed as models, and on that construal ${\cal S}$ is called a model space. Certain relations between points on this space turn out to be morphisms between models, and the space of models with these relations hints at the possibility of an “abstract” model theory. With these ideas, a point-set version of model theory is proposed, in the spirit of pointless topology or category theory, in which the central insight is to treat the semantic objects (models) homologously with the corresponding syntactic objects so they reside together in the same space.It is shown that there is a new, purely algebraic way of introducing constants in cylindric algebras, leading to a simplified proof of the representation theorem for locally finite cylindric algebras. Simple rich algebras emerge as homomorphic images of cylindric algebras. The topological version of this theorem is especially interesting: The Stone space of every locally finite cylindric algebra ${\frak A}$ can be partitioned into subspaces which are the Stone spaces of all the simple rich homomorphic images of ${\frak A}$. Each of these images completely determines a model of ${\frak A}$, and all denumerable models of ${\frak A}$ appear in this representation.The Stone space ${\cal S}$ of every cylindric algebra can likewise be partitioned into closed sets which are duals of all the types in ${\frak A}$. This fact yields new insights into miscellaneous results in the model theory of saturated models.


2009 ◽  
Vol 74 (3) ◽  
pp. 811-828 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson

AbstractA cylindric algebra atom structure is said to be strongly representable if all atomic cylindric algebras with that atom structure are representable. This is equivalent to saying that the full complex algebra of the atom structure is a representable cylindric algebra. We show that for any finite n ≥ 3, the class of all strongly representable n-dimensional cylindric algebra atom structures is not closed under ultraproducts and is therefore not elementary.Our proof is based on the following construction. From an arbitrary undirected, loop-free graph Γ, we construct an n-dimensional atom structure , and prove, for infinite Γ, that is a strongly representable cylindric algebra atom structure if and only if the chromatic number of Γ is infinite. A construction of Erdős shows that there are graphs Γk(k < ω) with infinite chromatic number, but having a non-principal ultraproduct ΠDΓk whose chromatic number is just two. It follows that is strongly representable (each k < ω) but is not.


2001 ◽  
Vol 38 (1-4) ◽  
pp. 273-278
Author(s):  
I. Németi ◽  
J. X. Madarász

We characterize the finite-dimensional elements of a free cylindric algebra. This solves Problem 2.10 in [Henkin, Monk, Tarski: Cylindric Algebras, North-Holland, 1971 and 1985]. We generalize the characterization to quasi-varieties of Boolean algebras with op- erators in place of cylindric algebras.


1998 ◽  
Vol 63 (4) ◽  
pp. 1549-1564 ◽  
Author(s):  
Yde Venema

AbstractWe prove that every rectangularly dense diagonal-free cylindric algebra is representable. As a corollary, we give finite, sound and complete axiomatizations for the finite-variable fragments of first order logic without equality and for multi-dimensional modal S5-logic.


1995 ◽  
Vol 60 (3) ◽  
pp. 775-796 ◽  
Author(s):  
Hajnal Andréka ◽  
Steven Givant ◽  
István Németi

Jónsson and Tarski [1951] introduced the notion of a Boolean algebra with (additive) operators (for short, a Bo). They showed that every Bo can be extended to a complete and atomic Bo satisfying certain additional conditions, and that any two complete, atomic extensions of satisfying these conditions are isomorphic over . Henkin [1970] extended these results to Boolean algebras with generalized (i.e., weakly additive) operators. The particular complete, atomic extension of studied by Jónsson and Tarski is called the perfect extension of , and is denoted by +. It is very useful in algebraic investigations of classes of algebras that are associated with logics.Interesting examples of Bos abound in algebraic logic, and include relation algebras, cylindric algebras, and polyadic and quasi-polyadic algebras (with or without equality). Moreover, there are several important constructions that, when applied to certain Bos, lead to other, derived Bos. Obvious examples include the formation of subalgebras, homomorphic images, relativizations, and direct products. Other examples include the Boolean algebra of ideal elements of a Bo, the neat β;-reduct of an α-dimensional cylindric algebra (β; < α), and the relation algebraic reduct of a cylindric algebra (of dimension at least 3). It is natural to ask about the relationship between the perfect extension of a Bo and the perfect extension of one of its derived algebras ′: Is the perfect extension of the derived algebra just the derived algebra of the perfect extension? In symbols, is (′)+ = (+)′? For example, is the perfect extension of a subalgebra, homomorphic image, relativization, or direct product, just the corresponding subalgebra, homomorphic image, relativization, or direct product of the perfect extension (up to isomorphisms)? Is the perfect extension of the Boolean algebra of ideal elements, or the neat reduct of a cylindric algebra, or the relation algebraic reduct of a cylindric algebra just the Boolean algebra of ideal elements, or the neat β;-reduct, or the relation algebraic reduct, of the perfect extension? We shall prove a general result in this direction; namely, if the derived algebra is constructed as the range of a relatively multiplicative operator, then the answer to our question is “yes”. We shall also give examples to show that in “infinitary” constructions, our question can have a spectacularly negative answer.


1990 ◽  
Vol 55 (2) ◽  
pp. 854-866 ◽  
Author(s):  
Norman Feldman

In this paper we discuss cylindric algebras with terms. The setting is two—sorted algebras—one sort for terms and one for Boolean elements. As with cylindric algebras, a cylindric algebra with terms has its roots in first order predicate logic [HMT1].Let Σ be a set of sentences in a first order language with terms, equality and variables u0,u1,u2, …, Define a relation ≡Σ on Fm, the set of formulas, by φ ≡Σθ if and only if Σ ⊢ φ ↔ θ, and on Tm, the set of terms, by τ ≡Σσ if and only if Σ ⊢ τ ≈ σ. The operations +, ·, cκ, 0, 1 are defined as usual on equivalence classes. Define , where is σ with τ substituted for all occurrences of uκ. That the operation *κ, for κ < α, is well defined follows from the first order axioms of equality. Let vκ = [uκ]. To establish the link between terms and Booleans, define operations oκ as follows: , where φ' is a variant of φ such that uκ is free for τ in φ′ and is φ′ with τ substituted for all free occurrences of uκ in φ′. From the first order axioms it follows that oκ, for κ < α, is well defined. Finally, instead of diagonal elements, we define a Boolean-valued operation on terms as follows: [τ] e [σ] = [τ ≈ σ].


1986 ◽  
Vol 22 (2-3) ◽  
pp. 117-119 ◽  
Author(s):  
I. N�meti
Keyword(s):  

1980 ◽  
Vol 45 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Roger Maddux

There is no algorithm for determining whether or not an equation is true in every 3-dimensional cylindric algebra. This theorem completes the solution to the problem of finding those values of α and β for which the equational theories of CAα and RCAβ are undecidable. (CAα and RCAβ are the classes of α-dimensional cylindric algebras and representable β-dimensional cylindric algebras. See [4] for definitions.) This problem was considered in [3]. It was known that RCA0 = CA0 and RCA1 = CA1 and that the equational theories of these classes are decidable. Tarski had shown that the equational theory of relation algebras is undecidable and, by utilizing connections between relation algebras and cylindric algebras, had also shown that the equational theories of CAα and RCAβ are undecidable whenever 4 ≤ α and 3 ≤ β. (Tarski's argument also applies to some varieties K ⊆ RCAβ with 3 ≤ β and to any variety K such that RCAα ⊆ K ⊆ CAα and 4 ≤ α.)Thus the only cases left open in 1961 were CA2, RCA2 and CA3. Shortly there-after Henkin proved, in one of Tarski's seminars at Berkeley, that the equational theory of CA2 is decidable, and Scott proved that the set of valid sentences in a first-order language with only two variables is recursive [11]. (For a more model-theoretic proof of Scott's theorem see [9].) Scott's result is equivalent to the decidability of the equational theory of RCA2, so the only case left open was CA3.


Sign in / Sign up

Export Citation Format

Share Document