scholarly journals Rare-Event Simulation for Tandem Queues: A Simple and Efficient Importance Sampling Scheme

Author(s):  
Denis Miretskiy ◽  
Werner Scheinhardt ◽  
Michel Mandjes
Author(s):  
Alexander L Krall ◽  
Michael E Kuhl ◽  
Shanchieh J Yang

Inherent vulnerabilities in a cyber network’s constituent machine services can be exploited by malicious agents. As a result, the machines on any network are at risk. Security specialists seek to mitigate the risk of intrusion events through network reconfiguration and defense. When dealing with rare cyber events, high-quality risk estimates using standard simulation approaches may be unattainable, or have significant attached uncertainty, even with a large computational simulation budget. To address this issue, an efficient rare event simulation modeling and analysis technique, namely, importance sampling for cyber networks, is developed. The importance sampling method parametrically amplifies certain aspects of the network in order to cause a rare event to happen more frequently. Output collected under these amplified conditions is then scaled back into the context of the original network to provide meaningful statistical inferences. The importance sampling methodology is tailored to cyber network attacks and takes the attacker’s successes and failures as well as the attacker’s targeting choices into account. The methodology is shown to produce estimates of higher quality than standard simulation with greater computational efficiency.


2010 ◽  
Vol 40 (1) ◽  
pp. 377-398 ◽  
Author(s):  
Don L. McLeish

AbstractWe consider estimating tail events using exponential families of importance sampling distributions. When the cannonical sufficient statistic for the exponential family mimics the tail behaviour of the underlying cumulative distribution function, we can achieve bounded relative error for estimating tail probabilities. Examples of rare event simulation from various distributions including Tukey's g&h distribution are provided.


Sign in / Sign up

Export Citation Format

Share Document