Application I—Some dislocation and interface problems and solutions in one- and two-dimensional quasicrystals

Author(s):  
Tianyou Fan
1997 ◽  
Vol 07 (07) ◽  
pp. 1451-1496 ◽  
Author(s):  
André Barbé

This paper considers three-dimensional coarse-graining invariant orbits for two-dimensional linear cellular automata over a finite field, as a nontrivial extension of the two-dimensional coarse-graining invariant orbits for one-dimensional CA that were studied in an earlier paper. These orbits can be found by solving a particular kind of recursive equations (renormalizing equations with rescaling term). The solution starts from some seed that has to be determined first. In contrast with the one-dimensional case, the seed has infinite support in most cases. The way for solving these equations is discussed by means of some examples. Three categories of problems (and solutions) can be distinguished (as opposed to only one in the one-dimensional case). Finally, the morphology of a few coarse-graining invariant orbits is discussed: Complex order (of quasiperiodic type) seems to emerge from random seeds as well as from seeds of simple order (for example, constant or periodic seeds).


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 79
Author(s):  
Chuan Li ◽  
Guangqing Long ◽  
Yiquan Li ◽  
Shan Zhao

The matched interface and boundary method (MIB) and ghost fluid method (GFM) are two well-known methods for solving elliptic interface problems. Moreover, they can be coupled with efficient time advancing methods, such as the alternating direction implicit (ADI) methods, for solving time-dependent partial differential equations (PDEs) with interfaces. However, to our best knowledge, all existing interface ADI methods for solving parabolic interface problems concern only constant coefficient PDEs, and no efficient and accurate ADI method has been developed for variable coefficient PDEs. In this work, we propose to incorporate the MIB and GFM in the framework of the ADI methods for generalized methods to solve two-dimensional parabolic interface problems with variable coefficients. Various numerical tests are conducted to investigate the accuracy, efficiency, and stability of the proposed methods. Both the semi-implicit MIB-ADI and fully-implicit GFM-ADI methods can recover the accuracy reduction near interfaces while maintaining the ADI efficiency. In summary, the GFM-ADI is found to be more stable as a fully-implicit time integration method, while the MIB-ADI is found to be more accurate with higher spatial and temporal convergence rates.


2014 ◽  
Vol 36 (4) ◽  
pp. A1478-A1499 ◽  
Author(s):  
Huayi Wei ◽  
Long Chen ◽  
Yunqing Huang ◽  
Bin Zheng

Sign in / Sign up

Export Citation Format

Share Document