scholarly journals Computational Algorithm for Some Problems with Variable Geometrical Structure

Author(s):  
N. Bessonov ◽  
V. Volpert
1978 ◽  
Vol 75 ◽  
pp. 703-705 ◽  
Author(s):  
Swadesh Ranjan Samanta ◽  
Ali Uddin Shaikh ◽  
Mahamed Asgar Ali

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


Author(s):  
Giuseppe Devillanova ◽  
Giovanni Molica Bisci ◽  
Raffaella Servadei

AbstractIn the present paper, we show how to define suitable subgroups of the orthogonal group $${O}(d-m)$$ O ( d - m ) related to the unbounded part of a strip-like domain $$\omega \times {\mathbb {R}}^{d-m}$$ ω × R d - m with $$d\ge m+2$$ d ≥ m + 2 , in order to get “mutually disjoint” nontrivial subspaces of partially symmetric functions of $$H^1_0(\omega \times {\mathbb {R}}^{d-m})$$ H 0 1 ( ω × R d - m ) which are compactly embedded in the associated Lebesgue spaces. As an application of the introduced geometrical structure, we prove (existence and) multiplicity results for semilinear elliptic problems set in a strip-like domain, in the presence of a nonlinearity which either satisfies the classical Ambrosetti–Rabinowitz condition or has a sublinear growth at infinity. The main theorems of this paper may be seen as an extension of existence and multiplicity results, already appeared in the literature, for nonlinear problems set in the entire space $${\mathbb {R}}^d$$ R d , as for instance, the ones due to Bartsch and Willem. The techniques used here are new.


Sign in / Sign up

Export Citation Format

Share Document