Optimality Conditions and Image Space Analysis for Vector Optimization Problems

Author(s):  
Giandomenico Mastroeni
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiaoqing Ou ◽  
Suliman Al-Homidan ◽  
Qamrul Hasan Ansari ◽  
Jiawei Chen

<p style='text-indent:20px;'>We introduce the <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{C} $\end{document}</tex-math></inline-formula>-robust efficient solution and optimistic <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{C} $\end{document}</tex-math></inline-formula>-robust efficient solution of uncertain multiobjective optimization problems (UMOP). By using image space analysis, robust optimality conditions as well as saddle point sufficient optimality conditions for uncertain multiobjective optimization problems are established based on real-valued linear (regular) weak separation function and real-valued (vector-valued) nonlinear (regular) weak separation functions. We also introduce two inclusion problems by using the image sets of robust counterpart of (UMOP) and establish the relations between the solution of the inclusion problems and the <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{C} $\end{document}</tex-math></inline-formula>-robust efficient solution (respectively, optimistic <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{C} $\end{document}</tex-math></inline-formula>-robust efficient solution) of (UMOP).</p>


2017 ◽  
Vol 9 (4) ◽  
pp. 168
Author(s):  
Giorgio Giorgi

We take into condideration necessary optimality conditions of minimum principle-type, that is for optimization problems having, besides the usual inequality and/or equality constraints, a set constraint. The first part pf the paper is concerned with scalar optimization problems; the second part of the paper deals with vector optimization problems.


Optimization ◽  
2020 ◽  
Vol 69 (9) ◽  
pp. 2063-2083
Author(s):  
Q. H. Ansari ◽  
P. K. Sharma ◽  
X. Qin

Sign in / Sign up

Export Citation Format

Share Document