inclusion problems
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 83)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 183 (3-4) ◽  
pp. 243-291
Author(s):  
Olivier Finkel ◽  
Michał Skrzypczak

We prove that ω-languages of (non-deterministic) Petri nets and ω-languages of (nondeterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Turing machines. We also show that it is highly undecidable to determine the topological complexity of a Petri net ω-language. Moreover, we infer from the proofs of the above results that the equivalence and the inclusion problems for ω-languages of Petri nets are ∏21-complete, hence also highly undecidable. Additionally, we show that the situation is quite the opposite when considering unambiguous Petri nets, which have the semantic property that at most one accepting run exists on every input. We provide a procedure of determinising them into deterministic Muller counter machines with counter copying. As a consequence, we entail that the ω-languages recognisable by unambiguous Petri nets are △30 sets.


2022 ◽  
Vol 7 (3) ◽  
pp. 3477-3493
Author(s):  
Adel Lachouri ◽  
◽  
Mohammed S. Abdo ◽  
Abdelouaheb Ardjouni ◽  
Bahaaeldin Abdalla ◽  
...  

<abstract><p>In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the $ \varphi $-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a $ \varphi $-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.</p></abstract>


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2250
Author(s):  
Thidaporn Seangwattana ◽  
Kamonrat Sombut ◽  
Areerat Arunchai ◽  
Kanokwan Sitthithakerngkiet

The goal of this study was to show how a modified variational inclusion problem can be solved based on Tseng’s method. In this study, we propose a modified Tseng’s method and increase the reliability of the proposed method. This method is to modify the relaxed inertial Tseng’s method by using certain conditions and the parallel technique. We also prove a weak convergence theorem under appropriate assumptions and some symmetry properties and then provide numerical experiments to demonstrate the convergence behavior of the proposed method. Moreover, the proposed method is used for image restoration technology, which takes a corrupt/noisy image and estimates the clean, original image. Finally, we show the signal-to-noise ratio (SNR) to guarantee image quality.


2021 ◽  
Vol 22 (4) ◽  
pp. 1-40
Author(s):  
Pierre Ganty ◽  
Francesco Ranzato ◽  
Pedro Valero

We study the language inclusion problem L 1 ⊆ L 2 , where L 1 is regular or context-free. Our approach relies on abstract interpretation and checks whether an overapproximating abstraction of L 1 , obtained by approximating the Kleene iterates of its least fixpoint characterization, is included in L 2 . We show that a language inclusion problem is decidable whenever this overapproximating abstraction satisfies a completeness condition (i.e., its loss of precision causes no false alarm) and prevents infinite ascending chains (i.e., it guarantees termination of least fixpoint computations). This overapproximating abstraction of languages can be defined using quasiorder relations on words, where the abstraction gives the language of all the words “greater than or equal to” a given input word for that quasiorder. We put forward a range of such quasiorders that allow us to systematically design decision procedures for different language inclusion problems, such as regular languages into regular languages or into trace sets of one-counter nets, and context-free languages into regular languages. In the case of inclusion between regular languages, some of the induced inclusion checking procedures correspond to well-known state-of-the-art algorithms, like the so-called antichain algorithms. Finally, we provide an equivalent language inclusion checking algorithm based on a greatest fixpoint computation that relies on quotients of languages and, to the best of our knowledge, was not previously known.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2460
Author(s):  
Preeyanuch Chuasuk ◽  
Anchalee Kaewcharoen

In this article, we discuss the hierarchical fixed point and split monotone variational inclusion problems and propose a new iterative method with the inertial terms involving a step size to avoid the difficulty of calculating the operator norm in real Hilbert spaces. A strong convergence theorem of the proposed method is established under some suitable control conditions. Furthermore, the proposed method is modified and used to derive a scheme for solving the split problems. Finally, we compare and demonstrate the efficiency and applicability of our schemes for numerical experiments as well as an example in the field of image restoration.


Sign in / Sign up

Export Citation Format

Share Document