Lambek Calculus and Linear Logic: Proof Nets as Parse Structures

Author(s):  
Richard Moot ◽  
Christian Retoré
2019 ◽  
Vol 29 (06) ◽  
pp. 733-762
Author(s):  
V. Michele Abrusci ◽  
Roberto Maieli

AbstractThis paper presents a simple and intuitive syntax for proof nets of the multiplicative cyclic fragment (McyLL) of linear logic (LL). The main technical achievement of this work is to propose a correctness criterion that allows for sequentialization (recovering a proof from a proof net) for all McyLL proof nets, including those containing cut links. This is achieved by adapting the idea of contractibility (originally introduced by Danos to give a quadratic time procedure for proof nets correctness) to cyclic LL. This paper also gives a characterization of McyLL proof nets for Lambek Calculus and thus a geometrical (i.e., non-inductive) way to parse phrases or sentences by means of Lambek proof nets.


1994 ◽  
Vol 59 (2) ◽  
pp. 419-444 ◽  
Author(s):  
Dirk Roorda

AbstractWe study interpolation for elementary fragments of classical linear logic. Unlike in intuitionistic logic (see [Renardel de Lavalette, 1989]) there are fragments in linear logic for which interpolation does not hold. We prove interpolation for a lot of fragments and refute it for the multiplicative fragment (→, +), using proof nets and quantum graphs. We give a separate proof for the fragment with implication and product, but without the structural rule of permutation. This is nearly the Lambek calculus. There is an appendix explaining what quantum graphs are and how they relate to proof nets.


2014 ◽  
Vol 26 (5) ◽  
pp. 789-828 ◽  
Author(s):  
WILLEM HEIJLTJES ◽  
LUTZ STRAßBURGER
Keyword(s):  

In this paper, it is proved that Girard's proof nets for multiplicative linear logic characterize free semi-star-autonomous categories.


2020 ◽  
Vol 30 (1) ◽  
pp. 239-256 ◽  
Author(s):  
Max Kanovich ◽  
Stepan Kuznetsov ◽  
Andre Scedrov

Abstract The Lambek calculus can be considered as a version of non-commutative intuitionistic linear logic. One of the interesting features of the Lambek calculus is the so-called ‘Lambek’s restriction’, i.e. the antecedent of any provable sequent should be non-empty. In this paper, we discuss ways of extending the Lambek calculus with the linear logic exponential modality while keeping Lambek’s restriction. Interestingly enough, we show that for any system equipped with a reasonable exponential modality the following holds: if the system enjoys cut elimination and substitution to the full extent, then the system necessarily violates Lambek’s restriction. Nevertheless, we show that two of the three conditions can be implemented. Namely, we design a system with Lambek’s restriction and cut elimination and another system with Lambek’s restriction and substitution. For both calculi, we prove that they are undecidable, even if we take only one of the two divisions provided by the Lambek calculus. The system with cut elimination and substitution and without Lambek’s restriction is folklore and known to be undecidable.


2016 ◽  
Vol 28 (7) ◽  
pp. 991-994
Author(s):  
LORENZO TORTORA DE FALCO

This special issue is devoted to some aspects of the new ideas that recently arose from the work of Thomas Ehrhard on the models of linear logic (LL) and of the λ-calculus. In some sense, the very origin of these ideas dates back to the introduction of LL in the 80s by Jean-Yves Girard. An obvious remark is that LL yielded a first logical quantitative account of the use of resources: the logical distinction between linear and non-linear formulas through the introduction of the exponential connectives. As explicitly mentioned by Girard in his first paper on the subject, the quantitative approach, to which he refers as ‘quantitative semantics,’ had a crucial influence on the birth of LL. And even though, at that time, it was given up for lack of ‘any logical justification’ (quoting the author), it contained rough versions of many concepts that were better understood, precisely introduced and developed much later, like differentiation and Taylor expansion for proofs. Around 2003, and thanks to the developments of LL and of the whole research area between logic and theoretical computer science, Ehrhard could come back to these fundamental intuitions and introduce the structure of finiteness space, allowing to reformulate this quantitative approach in a standard algebraic setting. The interpretation of LL in the category Fin of finiteness spaces and finitary relations suggested to Ehrhard and Regnier the differential extensions of LL and of the simply typed λ-calculus: Differential Linear Logic (DiLL) and the differential λ-calculus. The theory of LL proof-nets could be straightforwardly extended to DiLL, and a very natural notion of Taylor expansion of a proof-net (and of a λ-term) was introduced: an element of the Taylor expansion of the proof-net/term α is itself a (differential) proof-net/term and an approximation of α.


1998 ◽  
Vol 37 (5-6) ◽  
pp. 309-325 ◽  
Author(s):  
G. Bellin ◽  
A. Fleury
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document