taylor expansion
Recently Published Documents


TOTAL DOCUMENTS

541
(FIVE YEARS 121)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yali Shen ◽  
Ruoxia Yao

A determinant representation of the n -fold Darboux transformation for the integrable nonlocal derivative nonlinear Schödinger (DNLS) equation is presented. Using the proposed Darboux transformation, we construct some particular solutions from zero seed, which have not been reported so far for locally integrable systems. We also obtain explicit breathers from a nonzero seed with constant amplitude, deduce the corresponding extended Taylor expansion, and obtain several first-order rogue wave solutions. Our results reveal several interesting phenomena which differ from those emerging from the classical DNLS equation.


2022 ◽  
Vol Volume 18, Issue 1 ◽  
Author(s):  
Federico Olimpieri ◽  
Lionel Vaux Auclair

We show that the normal form of the Taylor expansion of a $\lambda$-term is isomorphic to its B\"ohm tree, improving Ehrhard and Regnier's original proof along three independent directions. First, we simplify the final step of the proof by following the left reduction strategy directly in the resource calculus, avoiding to introduce an abstract machine ad hoc. We also introduce a groupoid of permutations of copies of arguments in a rigid variant of the resource calculus, and relate the coefficients of Taylor expansion with this structure, while Ehrhard and Regnier worked with groups of permutations of occurrences of variables. Finally, we extend all the results to a nondeterministic setting: by contrast with previous attempts, we show that the uniformity property that was crucial in Ehrhard and Regnier's approach can be preserved in this setting.


2022 ◽  
Vol 43 (1) ◽  
pp. 1-20
Author(s):  
Binying Wang ◽  
Jinxing Liu ◽  
A. K. Soh ◽  
Naigang Liang

AbstractWe have proposed an “exact” strain gradient (SG) continuum model to properly predict the dispersive characteristics of diatomic lattice metamaterials with local and nonlocal interactions. The key enhancement is proposing a wavelength-dependent Taylor expansion to obtain a satisfactory accuracy when the wavelength gets close to the lattice spacing. Such a wavelength-dependent Taylor expansion is applied to the displacement field of the diatomic lattice, resulting in a novel SG model. For various kinds of diatomic lattices, the dispersion diagrams given by the proposed SG model always agree well with those given by the discrete model throughout the first Brillouin zone, manifesting the robustness of the present model. Based on this SG model, we have conducted the following discussions. (I) Both mass and stiffness ratios affect the band gap structures of diatomic lattice metamaterials, which is very helpful for the design of metamaterials. (II) The increase in the SG order can enhance the model performance if the modified Taylor expansion is adopted. Without doing so, the higher-order continuum model can suffer from a stronger instability issue and does not necessarily have a better accuracy. The proposed SG continuum model with the eighth-order truncation is found to be enough to capture the dispersion behaviors all over the first Brillouin zone. (III) The effects of the nonlocal interactions are analyzed. The nonlocal interactions reduce the workable range of the well-known long-wave approximation, causing more local extrema in the dispersive diagrams. The present model can serve as a satisfactory continuum theory when the wavelength gets close to the lattice spacing, i.e., when the long-wave approximation is no longer valid. For the convenience of band gap designs, we have also provided the design space from which one can easily obtain the proper mass and stiffness ratios corresponding to a requested band gap width.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jules Chouquet ◽  
Lionel Vaux Auclair

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node.


Author(s):  
Chaehyun Yu ◽  
Dong-Won Jung ◽  
U-Rae Kim ◽  
Jungil Lee

AbstractWe derive the formulas for the energy and wavefunction of the time-independent Schrödinger equation with perturbation in a compact form. Unlike the conventional approaches based on Rayleigh–Schrödinger or Brillouin–Wigner perturbation theories, we employ a recently developed approach of matrix-valued Lagrange multipliers that regularizes an eigenproblem. The Lagrange-multiplier regularization makes the characteristic matrix for an eigenproblem invertible. After applying the constraint equation to recover the original equation, we find the solutions of the energy and wavefunction consistent with the conventional approaches. This formalism does not rely on an iterative way and the order-by-order corrections are easily obtained by taking the Taylor expansion. The Lagrange-multiplier regularization formalism for perturbation theory presented in this paper is completely new and can be extended to the degenerate perturbation theory in a straightforward manner. We expect that this new formalism is also pedagogically useful to give insights on the perturbation theory in quantum mechanics.


2021 ◽  
Vol 20 ◽  
pp. 301-308
Author(s):  
Nazan Çağlar

Second-order linear hyperbolic equations are solved by using a new three level method based on nonpolynomial spline in the space direction and Taylor expansion in the time direction. Numerical results reveal that three level method based on non-polynomial spline is implemented and effective


2021 ◽  
Author(s):  
Samaneh Zabihi ◽  
reza ezzati ◽  
F Fattahzadeh ◽  
J Rashidinia

Abstract A numerical framework based on fuzzy finite difference is presented for approximating fuzzy triangular solutions of fuzzy partial differential equations by considering the type of $[gH-p]-$differentiability. The fuzzy triangle functions are expanded using full fuzzy Taylor expansion to develop a new fuzzy finite difference method. By considering the type of gH-differentiability, we approximate the fuzzy derivatives with a new fuzzy finite-difference. In particular, we propose using this method to solve non-homogeneous fuzzy heat equation with triangular initial-boundary conditions. We examine the truncation error and the convergence conditions of the proposed method. Several numerical examples are presented to demonstrate the performance of the methods. The final results demonstrate the efficiency and the ability of the new fuzzy finite difference method to produce triangular fuzzy numerical results which are more consistent with existing reality.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 4492-4500
Author(s):  
Debiao Meng ◽  
Zhengguo Hu ◽  
Jinbao Guo ◽  
Zhiyuan Lv ◽  
Tianwen Xie ◽  
...  

2021 ◽  
pp. 2150489
Author(s):  
Feng Yuan

The order-[Formula: see text] periodic solutions for the (2+1)-D complex modified Korteweg–de Vries (cmKdV) equations are investigated with the aid of Darboux transformation (DT) method. By using Taylor expansion considering the limits [Formula: see text], order-n rational solutions are obtained, among which the order-1 and order-2 solutions are analyzed in detail. By varying different parameter [Formula: see text], two kinds of rational solutions are deduced, namely, the line rogue wave solutions and the lump solutions. Dynamical properties of these solitons, including speed, amplitude, and extreme values, are investigated. It is shown that the line rogue wave solutions appear and disappear, while the lump solutions are localized traveling wave solutions.


Sign in / Sign up

Export Citation Format

Share Document