Beyond Differential Privacy: Composition Theorems and Relational Logic for f-divergences between Probabilistic Programs

Author(s):  
Gilles Barthe ◽  
Federico Olmedo
2022 ◽  
Vol 23 (1) ◽  
pp. 1-42
Author(s):  
Gilles Barthe ◽  
Charlie Jacomme ◽  
Steve Kremer

We study decidability problems for equivalence of probabilistic programs for a core probabilistic programming language over finite fields of fixed characteristic. The programming language supports uniform sampling, addition, multiplication, and conditionals and thus is sufficiently expressive to encode Boolean and arithmetic circuits. We consider two variants of equivalence: The first one considers an interpretation over the finite field F q , while the second one, which we call universal equivalence, verifies equivalence over all extensions F q k of F q . The universal variant typically arises in provable cryptography when one wishes to prove equivalence for any length of bitstrings, i.e., elements of F 2 k for any k . While the first problem is obviously decidable, we establish its exact complexity, which lies in the counting hierarchy. To show decidability and a doubly exponential upper bound of the universal variant, we rely on results from algorithmic number theory and the possibility to compare local zeta functions associated to given polynomials. We then devise a general way to draw links between the universal probabilistic problems and widely studied problems on linear recurrence sequences. Finally, we study several variants of the equivalence problem, including a problem we call majority, motivated by differential privacy. We also define and provide some insights about program indistinguishability, proving that it is decidable for programs always returning 0 or 1.


10.29007/vz48 ◽  
2018 ◽  
Author(s):  
Gilles Barthe ◽  
Thomas Espitau ◽  
Benjamin Grégoire ◽  
Justin Hsu ◽  
Pierre-Yves Strub

Proof by coupling is a classical proof technique for establishing probabilistic properties of two probabilistic processes, like stochastic dominance and rapid mixing of Markov chains. More recently, couplings have been investigated as a useful abstraction for formal reasoning about relational properties of probabilistic programs, in particular for modeling reduction-based cryptographic proofs and for verifying differential privacy. In this paper, we demonstrate that probabilistic couplings can be used for verifying non-relational probabilistic properties. Specifically, we show that the program logic pRHL—whose proofs are formal versions of proofs by coupling—can be used for formalizing uniformity and probabilistic independence. We formally verify our main examples using the EasyCrypt proof assistant.


2021 ◽  
Vol 199 ◽  
pp. 107410
Author(s):  
Xing Liu ◽  
Huiwei Wang ◽  
Guo Chen ◽  
Bo Zhou ◽  
Aqeel ur Rehman

2021 ◽  
Vol 1757 (1) ◽  
pp. 012186
Author(s):  
Wenfen Liu ◽  
Bixia Liu ◽  
Qiang Xu ◽  
Hui Lei

Sign in / Sign up

Export Citation Format

Share Document