Hypersurfaces with Isometric Reeb Flow in Hermitian Symmetric Spaces of Rank 2

Author(s):  
Young Jin Suh
2019 ◽  
Vol 31 (02) ◽  
pp. 2050014 ◽  
Author(s):  
Hyunjin Lee ◽  
Young Jin Suh

The object of the paper is to study cyclic parallel hypersurfaces in complex (hyperbolic) two-plane Grassmannians which have a remarkable geometric structure as Hermitian symmetric spaces of rank 2. First, we prove that if the Reeb vector field belongs to the orthogonal complement of the maximal quaternionic subbundle, then the shape operator of a cyclic parallel hypersurface in complex hyperbolic two-plane Grassmannians is Reeb parallel. By using this fact, we classify all cyclic parallel hypersurfaces in complex hyperbolic two-plane Grassmannians with non-vanishing geodesic Reeb flow. Next, we give a non-existence theorem for cyclic Hopf hypersurfaces in complex two-plane Grassmannians.


1996 ◽  
Vol 11 (18) ◽  
pp. 3257-3295 ◽  
Author(s):  
F. TOPPAN

Constrained KP and super-KP hierarchies of integrable equations (generalized NLS hierarchies) are systematically produced through a Lie-algebraic AKS matrix framework associated with the homogeneous grading. The role played by different regular elements in defining the corresponding hierarchies is analyzed, as well as the symmetry properties under the Weyl group transformations. The coset structure of higher order Hamiltonian densities is proven. For a generic Lie algebra the hierarchies considered here are integrable and essentially dependent on continuous free parameters. The bosonic hierarchies studied in Refs. 1 and 2 are obtained as special limit restrictions on Hermitian symmetric spaces. In the supersymmetric case the homogeneous grading is introduced consistently by using alternating sums of bosons and fermions in the spectral parameter power series. The bosonic hierarchies obtained from [Formula: see text] and the supersymmetric ones derived from the N=1 affinization of sl (2), sl (3) and osp (1|2) are explicitly constructed. An unexpected result is found: only a restricted subclass of the sl (3) bosonic hierarchies can be supersymmetrically extended while preserving integrability.


2008 ◽  
Vol 51 (3) ◽  
pp. 467-480
Author(s):  
Yue Wang

AbstractIn this paper, we first investigate the Dirichlet problem for coupled vortex equations. Secondly, we give existence results for solutions of the coupled vortex equations on a class of complete noncompact Kähler manifolds which include simply-connected strictly negative curved manifolds, Hermitian symmetric spaces of noncompact type and strictly pseudo-convex domains equipped with the Bergmann metric.


Sign in / Sign up

Export Citation Format

Share Document