The presence of small neutrino masses and flavour mixings can be accounted for naturally in various models about extensions of the standard model, particularly in the seesaw mechanism models. In this work, we present a minimally extended seesaw framework with two right-handed neutrinos, where the active neutrino masses are derived in the radiative regime. Using the framework it can be shown that within certain mass limits, the light neutrino mass term can approach a form that is similar to its form under type-I seesaw mechanism. Apart from this, we show that the decay width of right-handed neutrinos (produced through the decay of [Formula: see text] boson in a particle collider) is short enough to cause a sufficiently long lifetime for the particles, thus ensuring an observable displacement in the LHC between the production and decay vertices. We comment on the fact that these displaced vertex signatures thus can serve as a means to verify the existence of these right-handed neutrinos in future experiments. Lastly, we line up the possibility of our future work where the vertex signatures of particles greater than the mass of [Formula: see text] boson can be worked upon.