Improved Fixed-Base Comb Method for Fast Scalar Multiplication

Author(s):  
Nashwa A. F. Mohamed ◽  
Mohsin H. A. Hashim ◽  
Michael Hutter
Sensors ◽  
2013 ◽  
Vol 13 (7) ◽  
pp. 9483-9512
Author(s):  
Hwajeong Seo ◽  
Hyunjin Kim ◽  
Taehwan Park ◽  
Yeoncheol Lee ◽  
Zhe Liu ◽  
...  

2014 ◽  
Vol 17 (A) ◽  
pp. 181-202 ◽  
Author(s):  
Daniel J. Bernstein ◽  
Tanja Lange

AbstractThis paper introduces ‘hyper-and-elliptic-curve cryptography’, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, Diffie–Hellman shared-secret computation) and at the same time supports fast elliptic-curve formulas for fixed-base-point scalar multiplication (for example, key generation) and multi-scalar multiplication (for example, signature verification).


Author(s):  
Sunghyun Jin ◽  
Sangyub Lee ◽  
Sung Min Cho ◽  
HeeSeok Kim ◽  
Seokhie Hong

In this paper, we propose a novel key recovery attack against secure ECDSA signature generation employing regular table-based scalar multiplication. Our attack exploits novel leakage, denoted by collision information, which can be constructed by iteratively determining whether two entries loaded from the table are the same or not through side-channel collision analysis. Without knowing the actual value of the table entries, an adversary can recover the private key of ECDSA by finding the condition for which several nonces are linearly dependent by exploiting only the collision information. We show that this condition can be satisfied practically with a reasonable number of digital signatures and corresponding traces. Furthermore, we also show that all entries in the pre-computation table can be recovered using the recovered private key and a sufficient number of digital signatures based on the collision information. As case studies, we find that fixed-base comb and T_SM scalar multiplication are vulnerable to our attack. Finally, we verify that our attack is a real threat by conducting an experiment with power consumption traces acquired during T_SM scalar multiplication operations on an ARM Cortex-M based microcontroller. We also provide the details for validation process.


Author(s):  
Gustavo Banegas ◽  
Daniel J. Bernstein ◽  
Iggy Van Hoof ◽  
Tanja Lange

This paper analyzes and optimizes quantum circuits for computing discrete logarithms on binary elliptic curves, including reversible circuits for fixed-base-point scalar multiplication and the full stack of relevant subroutines. The main optimization target is the size of the quantum computer, i.e., the number of logical qubits required, as this appears to be the main obstacle to implementing Shor’s polynomial-time discrete-logarithm algorithm. The secondary optimization target is the number of logical Toffoli gates. For an elliptic curve over a field of 2n elements, this paper reduces the number of qubits to 7n + ⌊log2(n)⌋ + 9. At the same time this paper reduces the number of Toffoli gates to 48n3 + 8nlog2(3)+1 + 352n2 log2(n) + 512n2 + O(nlog2(3)) with double-and-add scalar multiplication, and a logarithmic factor smaller with fixed-window scalar multiplication. The number of CNOT gates is also O(n3). Exact gate counts are given for various sizes of elliptic curves currently used for cryptography.


Author(s):  
E. Rau ◽  
N. Karelin ◽  
V. Dukov ◽  
M. Kolomeytsev ◽  
S. Gavrikov ◽  
...  

There are different methods and devices for the increase of the videosignal information in SEM. For example, with the help of special pure electronic [1] and opto-electronic [2] systems equipotential areas on the specimen surface in SEM were obtained. This report generalizes quantitative universal method for space distribution representation of research specimen parameter by contour equal signal lines. The method is based on principle of comparison of information signal value with the fixed levels.Transformation image system for obtaining equal signal lines maps was developed in two versions:1)In pure electronic system [3] it is necessary to compare signal U (see Fig.1-a), which gives potential distribution on specimen surface along each scanning line with fixed base level signals εifor obtaining quantitative equipotential information on solid state surface. The amplitude analyzer-comparator gives flare sport videopulses at any fixed coordinate and any instant time when initial signal U is equal to one of the base level signals ε.


2004 ◽  
Author(s):  
Guihua Yang ◽  
Farnaz Baniahmad ◽  
Beverly K. Jaeger ◽  
Ronald R. Mourant
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document