Invariant Semi-definite Subspaces of Linear Operators in Krein Spaces

1974 ◽  
pp. 163-183
Author(s):  
János Bognár
2011 ◽  
Vol 83 (3) ◽  
pp. 768-788 ◽  
Author(s):  
T. Ya. Azizov ◽  
J. Behrndt ◽  
P. Jonas ◽  
C. Trunk

Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 6001-6016
Author(s):  
Il An ◽  
Jaeseong Heo

In this paper, we introduce a notion of the J-kernel of a bounded linear operator on a Krein space and study the J-Fredholm theory for Krein space operators. Using J-Fredholm theory, we discuss when (a-)J-Weyl?s theorem or (a-)J-Browder?s theorem holds for bounded linear operators on a Krein space instead of a Hilbert space.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3749-3760 ◽  
Author(s):  
Ali Karaisa ◽  
Uğur Kadak

Upon prior investigation on statistical convergence of fuzzy sequences, we study the notion of pointwise ??-statistical convergence of fuzzy mappings of order ?. Also, we establish the concept of strongly ??-summable sequences of fuzzy mappings and investigate some inclusion relations. Further, we get an analogue of Korovkin-type approximation theorem for fuzzy positive linear operators with respect to ??-statistical convergence. Lastly, we apply fuzzy Bernstein operator to construct an example in support of our result.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


Sign in / Sign up

Export Citation Format

Share Document