Asymptotic Behaviour of Elementary Spherical Functions

Author(s):  
Ramesh Gangolli ◽  
Veeravalli S. Varadarajan
2019 ◽  
Vol 952 (10) ◽  
pp. 2-9
Author(s):  
Yu.M. Neiman ◽  
L.S. Sugaipova ◽  
V.V. Popadyev

As we know the spherical functions are traditionally used in geodesy for modeling the gravitational field of the Earth. But the gravitational field is not stationary either in space or in time (but the latter is beyond the scope of this article) and can change quite strongly in various directions. By its nature, the spherical functions do not fully display the local features of the field. With this in mind it is advisable to use spatially localized basis functions. So it is convenient to divide the region under consideration into segments with a nearly stationary field. The complexity of the field in each segment can be characterized by means of an anisotropic matrix resulting from the covariance analysis of the field. If we approach the modeling in this way there can arise a problem of poor coherence of local models on segments’ borders. To solve the above mentioned problem it is proposed in this article to use new basis functions with Mahalanobis metric instead of the usual Euclidean distance. The Mahalanobis metric and the quadratic form generalizing this metric enables us to take into account the structure of the field when determining the distance between the points and to make the modeling process continuous.


1990 ◽  
Vol 27 (03) ◽  
pp. 545-556 ◽  
Author(s):  
S. Kalpazidou

The asymptotic behaviour of the sequence (𝒞 n (ω), wc,n (ω)/n), is studied where 𝒞 n (ω) is the class of all cycles c occurring along the trajectory ωof a recurrent strictly stationary Markov chain (ξ n ) until time n and wc,n (ω) is the number of occurrences of the cycle c until time n. The previous sequence of sample weighted classes converges almost surely to a class of directed weighted cycles (𝒞∞, ω c ) which represents uniquely the chain (ξ n ) as a circuit chain, and ω c is given a probabilistic interpretation.


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


Sign in / Sign up

Export Citation Format

Share Document