Well-posedness and asymptotic behaviour of a wave equation with non-monotone memory kernel

Author(s):  
Rongsheng Mu ◽  
Genqi Xu
2018 ◽  
Vol 52 (1) ◽  
pp. 015201 ◽  
Author(s):  
Trifce Sandev ◽  
Zivorad Tomovski ◽  
Johan L A Dubbeldam ◽  
Aleksei Chechkin

Author(s):  
Tadahiro Oh ◽  
Tristan Robert ◽  
Yuzhao Wang

AbstractWe study the two-dimensional stochastic nonlinear heat equation (SNLH) and stochastic damped nonlinear wave equation (SdNLW) with an exponential nonlinearity $$\lambda \beta e^{\beta u }$$ λ β e β u , forced by an additive space-time white noise. (i) We first study SNLH for general $$\lambda \in {\mathbb {R}}$$ λ ∈ R . By establishing higher moment bounds of the relevant Gaussian multiplicative chaos and exploiting the positivity of the Gaussian multiplicative chaos, we prove local well-posedness of SNLH for the range $$0< \beta ^2 < \frac{8 \pi }{3 + 2 \sqrt{2}} \simeq 1.37 \pi $$ 0 < β 2 < 8 π 3 + 2 2 ≃ 1.37 π . Our argument yields stability under the noise perturbation, thus improving Garban’s local well-posedness result (2020). (ii) In the defocusing case $$\lambda >0$$ λ > 0 , we exploit a certain sign-definite structure in the equation and the positivity of the Gaussian multiplicative chaos. This allows us to prove global well-posedness of SNLH for the range: $$0< \beta ^2 < 4\pi $$ 0 < β 2 < 4 π . (iii) As for SdNLW in the defocusing case $$\lambda > 0$$ λ > 0 , we go beyond the Da Prato-Debussche argument and introduce a decomposition of the nonlinear component, allowing us to recover a sign-definite structure for a rough part of the unknown, while the other part enjoys a stronger smoothing property. As a result, we reduce SdNLW into a system of equations (as in the paracontrolled approach for the dynamical $$\Phi ^4_3$$ Φ 3 4 -model) and prove local well-posedness of SdNLW for the range: $$0< \beta ^2 < \frac{32 - 16\sqrt{3}}{5}\pi \simeq 0.86\pi $$ 0 < β 2 < 32 - 16 3 5 π ≃ 0.86 π . This result (translated to the context of random data well-posedness for the deterministic nonlinear wave equation with an exponential nonlinearity) solves an open question posed by Sun and Tzvetkov (2020). (iv) When $$\lambda > 0$$ λ > 0 , these models formally preserve the associated Gibbs measures with the exponential nonlinearity. Under the same assumption on $$\beta $$ β as in (ii) and (iii) above, we prove almost sure global well-posedness (in particular for SdNLW) and invariance of the Gibbs measures in both the parabolic and hyperbolic settings. (v) In Appendix, we present an argument for proving local well-posedness of SNLH for general $$\lambda \in {\mathbb {R}}$$ λ ∈ R without using the positivity of the Gaussian multiplicative chaos. This proves local well-posedness of SNLH for the range $$0< \beta ^2 < \frac{4}{3} \pi \simeq 1.33 \pi $$ 0 < β 2 < 4 3 π ≃ 1.33 π , slightly smaller than that in (i), but provides Lipschitz continuity of the solution map in initial data as well as the noise.


Author(s):  
Zhiyuan Li ◽  
Feng-Fei Jin

This paper is concerned with the boundary error feedback regulation for a one-dimensional anti-stable wave equation with distributed disturbance generated by a finite-dimensional exogenous system. Transport equation and regulator equation are introduced first to deal with the anti-damping on boundary and the distributed disturbance of the original system. Then, the tracking error and its derivative are measured to design an observer for both exosystem and auxiliary partial differential equation (PDE) system to recover the state. After proving the well-posedness of the regulator equations, we propose an observer-based controller to regulate the tracking error to zero exponentially and keep the states of all the internal loop uniformly bounded. Finally, some numerical simulations are presented to validate the effectiveness of the proposed controller.


2020 ◽  
Vol 17 (01) ◽  
pp. 123-139
Author(s):  
Lucas C. F. Ferreira ◽  
Jhean E. Pérez-López

We show global-in-time well-posedness and self-similarity for the semilinear wave equation with nonlinearity [Formula: see text] in a time-weighted framework based on the larger family of homogeneous Besov spaces [Formula: see text] for [Formula: see text]. As a consequence, in some cases of the power [Formula: see text], we cover a initial-data class larger than in some previous results. Our approach relies on dispersive-type estimates and a suitable [Formula: see text]-product estimate in Besov spaces.


Author(s):  
Bjoern Bringmann

Abstract We study the derivative nonlinear wave equation $- \partial _{tt} u + \Delta u = |\nabla u|^2$ on $\mathbb{R}^{1 +3}$. The deterministic theory is determined by the Lorentz-critical regularity $s_L = 2$, and both local well-posedness above $s_L$ as well as ill-posedness below $s_L$ are known. In this paper, we show the local existence of solutions for randomized initial data at the super-critical regularities $s\geqslant 1.984$. In comparison to the previous literature in random dispersive equations, the main difficulty is the absence of a (probabilistic) nonlinear smoothing effect. To overcome this, we introduce an adaptive and iterative decomposition of approximate solutions into rough and smooth components. In addition, our argument relies on refined Strichartz estimates, a paraproduct decomposition, and the truncation method of de Bouard and Debussche.


Sign in / Sign up

Export Citation Format

Share Document