Computerized Neuromonitoring: Biosignal Analysis by Microprocessors

Author(s):  
A. Korn ◽  
M. R. Gaab ◽  
H. Prüske
Keyword(s):  
2016 ◽  
Vol 27 (01) ◽  
pp. 1650031 ◽  
Author(s):  
Diana Cogan ◽  
Javad Birjandtalab ◽  
Mehrdad Nourani ◽  
Jay Harvey ◽  
Venkatesh Nagaraddi

Persons who suffer from intractable seizures are safer if attended when seizures strike. Consequently, there is a need for wearable devices capable of detecting both convulsive and nonconvulsive seizures in everyday life. We have developed a three-stage seizure detection methodology based on 339 h of data (26 seizures) collected from 10 patients in an epilepsy monitoring unit. Our intent is to develop a wearable system that will detect seizures, alert a caregiver and record the time of seizure in an electronic diary for the patient’s physician. Stage I looks for concurrent activity in heart rate, arterial oxygenation and electrodermal activity, all of which can be monitored by a wrist-worn device and which in combination produce a very low false positive rate. Stage II looks for a specific pattern created by these three biosignals. For the patients whose seizures cannot be detected by Stage II, Stage III detects seizures using limited-channel electroencephalogram (EEG) monitoring with at most three electrodes. Out of 10 patients, Stage I recognized all 11 seizures from seven patients, Stage II detected all 10 seizures from six patients and Stage III detected all of the seizures of two out of the three patients it analyzed.


2016 ◽  
Vol 61 (6) ◽  
Author(s):  
Stephan Lau ◽  
Jens Haueisen
Keyword(s):  

2020 ◽  
Author(s):  
Subha D. Puthankattil

The recent advances in signal processing techniques have enabled the analysis of biosignals from brain so as to enhance the predictive capability of mental states. Biosignal analysis has been successfully used to characterise EEG signals of unipolar depression patients. Methods of characterisation of EEG signals and the use of nonlinear parameters are the major highlights of this chapter. Bipolar frontopolar-temporal EEG recordings obtained under eyes open and eyes closed conditions are used for the analysis. A discussion on the reliability of the use of energy distribution and Relative Wavelet Energy calculations for distinguishing unipolar depression patients from healthy controls is presented. The potential of the application of Wavelet Entropy to differentiate states of the brain under normal and pathologic condition is introduced. Details are given on the suitability of ascertaining certain nonlinear indices on the feature extraction, assuming the time series to be highly nonlinear. The assumption of nonlinearity of the measured EEG time series is further verified using surrogate analysis. The studies discussed in this chapter indicate lower values of nonlinear measures for patients. The higher values of signal energy associated with the delta bands of depression patients in the lower frequency range are regarded as a major characteristic indicative of a state of depression. The chapter concludes by presenting the important results in this direction that may lead to better insight on the brain activity and cognitive processes. These measures are hence posited to be potential biomarkers for the detection of depression.


Sign in / Sign up

Export Citation Format

Share Document