Self-Interaction Effects in One-Dimensional Wave Propagation: Solitons in Optical Fibers and in Periodic Structures

1991 ◽  
pp. 119-154
Author(s):  
D. L. Mills
1983 ◽  
Vol 50 (3) ◽  
pp. 637-640 ◽  
Author(s):  
A. Mioduchowski ◽  
M. G. Faulkner ◽  
A. Pielorz ◽  
W. Nadolski

One-dimensional wave propagation theory is used to investigate the forces, velocities, and displacements in a series of elastic rods connected to rigid elements. The method is applied to the case of two subsystems that collide. The technique allows the calculations to be done during a short-lived event such as a collision.


1997 ◽  
pp. 125-171
Author(s):  
H.R. Harrison ◽  
T. Nettleton

Author(s):  
Vladislav S. Sorokin

The paper deals with the analysis of wave propagation in a general one-dimensional (1D) non-uniform waveguide featuring multiple modulations of parameters with different, arbitrarily related, spatial periods. The considered quasi-periodic waveguide, in particular, can be viewed as a model of pure periodic structures with imperfections. Effects of such imperfections on the waveguide frequency bandgaps are revealed and described by means of the method of varying amplitudes and the method of direct separation of motions. It is shown that imperfections cannot considerably degrade wave attenuation properties of 1D periodic structures, e.g. reduce widths of their frequency bandgaps. Attenuation levels and frequency bandgaps featured by the quasi-periodic waveguide are studied without imposing any restrictions on the periods of the modulations, e.g. for their ratio to be rational. For the waveguide featuring relatively small modulations with periods that are not close to each other, each of the frequency bandgaps, to the leading order of smallness, is controlled only by one of the modulations. It is shown that introducing additional spatial modulations to a pure periodic structure can enhance its wave attenuation properties, e.g. a relatively low-frequency bandgap can be induced providing vibration attenuation in frequency ranges where damping is less effective.


Sign in / Sign up

Export Citation Format

Share Document