Kernels and cohomology groups for some finite covers

Author(s):  
David M. Evans ◽  
Darren G. D. Gray
2011 ◽  
Vol 330 (1) ◽  
pp. 221-233 ◽  
Author(s):  
David M. Evans ◽  
Elisabetta Pastori

1997 ◽  
Vol 193 (1) ◽  
pp. 214-238 ◽  
Author(s):  
David M Evans

2017 ◽  
pp. 79-100
Author(s):  
David M. Evans ◽  
Darren G. D. Gray

2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.


2016 ◽  
Vol 458 ◽  
pp. 120-133 ◽  
Author(s):  
Akinari Hoshi ◽  
Ming-chang Kang ◽  
Aiichi Yamasaki

2016 ◽  
Vol 27 (06) ◽  
pp. 1650057 ◽  
Author(s):  
Haibo Chen ◽  
Jianzhi Han ◽  
Yucai Su ◽  
Ying Xu

In this paper, we introduce two kinds of Lie conformal algebras, associated with the loop Schrödinger–Virasoro Lie algebra and the extended loop Schrödinger–Virasoro Lie algebra, respectively. The conformal derivations, the second cohomology groups of these two conformal algebras are completely determined. And nontrivial free conformal modules of rank one and [Formula: see text]-graded free intermediate series modules over these two conformal algebras are also classified in the present paper.


2018 ◽  
Vol 29 (12) ◽  
pp. 1850075
Author(s):  
Kotaro Kawai ◽  
Hông Vân Lê ◽  
Lorenz Schwachhöfer

In this paper, we show that a parallel differential form [Formula: see text] of even degree on a Riemannian manifold allows to define a natural differential both on [Formula: see text] and [Formula: see text], defined via the Frölicher–Nijenhuis bracket. For instance, on a Kähler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel [Formula: see text]-form on a [Formula: see text]- and [Formula: see text]-manifold, respectively. We calculate the cohomology groups of [Formula: see text] and give a partial description of the cohomology of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document