scholarly journals Permutation groups with small orbit growth

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.

2008 ◽  
Vol 8 (04) ◽  
pp. 431-489 ◽  
Author(s):  
KHALIL DJELLOUL ◽  
THI-BICH-HANH DAO ◽  
THOM FRÜHWIRTH

AbstractWe present in this paper a first-order axiomatization of an extended theoryTof finite or infinite trees, built on a signature containing an infinite set of function symbols and a relationfinite(t), which enables to distinguish between finite and infinite trees. We show thatThas at least one model and prove its completeness by giving not only a decision procedure, but a full first-order constraint solver that gives clear and explicit solutions for any first-order constraint satisfaction problem inT. The solver is given in the form of 16 rewriting rules that transform any first-order constraintinto an equivalent disjunction φ of simple formulas such that φ is either the formulatrueor the formulafalseor a formula having at least one free variable, being equivalent neither totruenor tofalseand where the solutions of the free variables are expressed in a clear and explicit way. The correctness of our rules implies the completeness ofT. We also describe an implementation of our algorithm in CHR (Constraint Handling Rules) and compare the performance with an implementation in C++ and that of a recent decision procedure for decomposable theories.


Filomat ◽  
2013 ◽  
Vol 27 (5) ◽  
pp. 889-897
Author(s):  
Aleksandar Takaci ◽  
Aleksandar Perovic ◽  
Aleksandar Jovanovic

The aim of this paper is to interpret Generalized Priority Constraint Satisfaction Problem (GPFCSP) using the interpretational method. We will interpret the L? ? logic into the first order theory of the reals, in order to obtain alternative, simple-complete axiomatization of L? ? logic. A complete axiomatization using the interpretation method as a syntactical approach is given.


2014 ◽  
Vol 24 (08) ◽  
pp. 1141-1156 ◽  
Author(s):  
Manuel Bodirsky ◽  
Hubie Chen ◽  
Michał Wrona

A temporal constraint language is a set of relations that are first-order definable over (ℚ;<). We show that several temporal constraint languages whose constraint satisfaction problem is maximally tractable are also maximally tractable for the more expressive quantified constraint satisfaction problem. These constraint languages are defined in terms of preservation under certain binary polymorphisms. We also present syntactic characterizations of the relations in these languages.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


Sign in / Sign up

Export Citation Format

Share Document