scholarly journals The Essence of Functional Programming on Semantic Data

Author(s):  
Martin Leinberger ◽  
Ralf Lämmel ◽  
Steffen Staab
Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Camilla Follini ◽  
Valerio Magnago ◽  
Kilian Freitag ◽  
Michael Terzer ◽  
Carmen Marcher ◽  
...  

The application of robotics in construction is hindered by the site environment, which is unstructured and subject to change. At the same time, however, buildings and corresponding sites can be accurately described by Building Information Modeling (BIM). Such a model contains geometric and semantic data about the construction and operation phases of the building and it is already available at the design phase. We propose a method to leverage BIM for simple yet efficient deployment of robotic systems for construction and operation of buildings. With our proposed approach, BIM is used to provide the robot with a priori geometric and semantic information on the environment and to store information on the operation progress. We present two applications that verify the effectiveness of our proposed method. This system represents a step forward towards an easier application of robots in construction.


Author(s):  
Norihiro Yamada ◽  
Samson Abramsky

Abstract The present work achieves a mathematical, in particular syntax-independent, formulation of dynamics and intensionality of computation in terms of games and strategies. Specifically, we give game semantics of a higher-order programming language that distinguishes programmes with the same value yet different algorithms (or intensionality) and the hiding operation on strategies that precisely corresponds to the (small-step) operational semantics (or dynamics) of the language. Categorically, our games and strategies give rise to a cartesian closed bicategory, and our game semantics forms an instance of a bicategorical generalisation of the standard interpretation of functional programming languages in cartesian closed categories. This work is intended to be a step towards a mathematical foundation of intensional and dynamic aspects of logic and computation; it should be applicable to a wide range of logics and computations.


2000 ◽  
Vol 32 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Scott Vandenberg ◽  
Michael Wollowski

Sign in / Sign up

Export Citation Format

Share Document