2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yi-hua Zhong ◽  
Yan-lin Jia ◽  
Dandan Chen ◽  
Yan Yang

Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
ASHUTOSH UPADHYAYA

A study was undertaken in Bhagwanpur distributary of Vaishali Branch Canal in Gandak Canal Command Area, Bihar to optimally allocate land area under different crops (rice and maize in kharif, wheat, lentil, potato in rabi and green gram in summer) in such a manner that maximizes net return, maximizes crop production and minimizes labour requirement employing simplex linear programming method and Multi-Objective Fuzzy Linear Programming (MOFLP) method. Maximum net return, maximum agricultural production, and minimum labour required under defined constraints (including 10% affinity level of farmers to rice and wheat crops) as obtained employing Simplex method were ` 3.7 × 108, 5.06 × 107 Kg and 66,092 man-days, respectively, whereas Multi-Objective Fuzzy Linear Programming (MOFLP) method yielded compromised solution with net return, crop production and labour required as ` 2.4 × 108, 3.3 × 107Kg and 1,79,313 man-days, respectively. As the affinity level of farmers to rice and wheat crops increased from 10% to 40%, maximum net return and maximum production as obtained from simplex linear programming method and MOFLP followed a decreasing trend and minimum labour required followed an increasing trend. MOFLP may be considered as one of the best capable ways of providing a compromised solution, which can fulfill all the objectives at a time.


Sign in / Sign up

Export Citation Format

Share Document