production planning
Recently Published Documents


TOTAL DOCUMENTS

3971
(FIVE YEARS 685)

H-INDEX

73
(FIVE YEARS 8)

2022 ◽  
pp. 1-19
Author(s):  
Samuel J. Sauls ◽  
Craig A. Stark
Keyword(s):  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 483
Author(s):  
Mohamed Saeed khaled ◽  
Ibrahim Abdelfadeel Shaban ◽  
Ahmed Karam ◽  
Mohamed Hussain ◽  
Ismail Zahran ◽  
...  

Sustainability has become of great interest in many fields, especially in production systems due to the continual increase in the scarcity of raw materials and environmental awareness. Recent literature has given significant attention to considering the three sustainability pillars (i.e., environmental, economic, and social sustainability) in solving production planning problems. Therefore, the present study conducts a review of the literature on sustainable production planning to analyze the relationships among different production planning problems (e.g., scheduling, lot sizing, aggregate planning, etc.) and the three sustainability pillars. In addition, we analyze the identified studies based on the indicators that define each pillar. The results show that the literature most frequently addresses production scheduling problems while it lacks studies on aggregate production planning problems that consider the sustainability pillars. In addition, there is a growing trend towards obtaining integrated solutions of different planning problems, e.g., combining production planning problems with maintenance planning or energy planning. Additionally, around 45% of the identified studies considered the integration of the economic and the environmental pillars in different production planning problems. In addition, energy consumption and greenhouse gas emissions are the most frequent sustainability indicators considered in the literature, while less attention has been given to social indicators. Another issue is the low number of studies that have considered all three sustainability pillars simultaneously. The finidings highlight the need for more future research towards holistic sustainable production planning approaches.


2022 ◽  
pp. 1-18
Author(s):  
Nan-Yun Jiang ◽  
Hong-Sen Yan

For the fixed-position assembly workshop, the integrated optimization problem of production planning and scheduling in the uncertain re-entrance environment is studied. Based on the situation of aircraft assembly workshops, the characteristics of fixed-position assembly workshop with uncertain re-entrance are abstracted. As the re-entrance repetition obeys some type of probability distribution, the expected value is used to describe the repetition, and a bi-level stochastic expected value programming model of integrated production planning and scheduling is constructed. Recursive expressions for start time and completion time of assembly classes and teams are confirmed. And the relation between the decision variable in the lower-level model of scheduling and the overtime and earliness of assembly classes and teams in the upper-level model of production planning is identified. Addressing the characteristics of bi-level programming model, an alternate iteration method based on Improved Genetic Algorithm (AI-IGA) is proposed to solve the models. Elite Genetic Algorithm (EGA) is introduced for the upper-level model of production planning, and Genetic Simulated Annealing Algorithm based on Stochastic Simulation Technique (SS-GSAA) is developed for the lower-level model of scheduling. Results from our experiments demonstrate that the proposed method is feasible for production planning and optimization of the fixed-position assembly workshop with uncertain re-entrance. And algorithm comparison verifies the effectiveness of the proposed algorithm.


2022 ◽  
Vol 10 (1) ◽  
pp. 181-196 ◽  
Author(s):  
Yuan-Shyi Peter Chiu ◽  
Jia-Ning Lin ◽  
Yunsen Wang ◽  
Hung-Yi Chen

This research explores the collective impact of overtime, random breakdown, discontinuous issuing rule, and scrap on batch production planning in a supply-chain environment. In today’s global business environment, manufacturing firms encounter numerous operational challenges. Externally, they must promptly satisfy the customers’ various requests, while internally, they must cautiously manage several inevitable issues in the fabrication process. These issues might be concerned with scrap, random breakdown, etc. Resolving such issues is crucial for meeting the due dates of customers’ orders, adhering to the expected manufacturing schedules, product quality, and minimizing the total fabrication-transportation-inventory costs. The study develops a model to characterize the system’s features mentioned above and assist the manufacturers with batch fabrication planning. The model proposes a solution process with an algorithm seeking an optimal runtime for the system. Additionally, it gives a numerical illustration depicting the collective and individual impacts of these special features on the operating policy and other performance indices. This model and the research findings can facilitate manufacturers’ decision-making for green batch fabrication and enhance competitive advantage.


2022 ◽  
pp. 266-303
Author(s):  
Guy Coulthard ◽  
Carl Baxter ◽  
Tu Van Binh

Demand forecasting and production planning are challenging issues when working to supply perishable goods to fulfil supermarket requirements as opposed to dry goods that can be manufactured and have a fixed storage life. The focus of this report is on the improvement of resource utilisation through better forecasting, planning, and information flow. There is a fluctuation for labour demand within the processing function; controlling the number of staff daily is vital to the efficient running of production and waste reduction. It is the belief for the management that left unchecked the production planners can tend to overorder staff as a contingency.


Sign in / Sign up

Export Citation Format

Share Document