scholarly journals Hamiltonian Structure of 2+1 Dimensional Gravity

Author(s):  
P. Menotti
2001 ◽  
Vol 18 (12) ◽  
pp. 2253-2275 ◽  
Author(s):  
Luigi Cantini ◽  
Pietro Menotti ◽  
Domenico Seminara

2021 ◽  
Vol 31 (4) ◽  
Author(s):  
R. Camassa ◽  
G. Falqui ◽  
G. Ortenzi ◽  
M. Pedroni ◽  
T. T. Vu Ho

AbstractThe theory of three-layer density-stratified ideal fluids is examined with a view toward its generalization to the n-layer case. The focus is on structural properties, especially for the case of a rigid upper lid constraint. We show that the long-wave dispersionless limit is a system of quasi-linear equations that do not admit Riemann invariants. We equip the layer-averaged one-dimensional model with a natural Hamiltonian structure, obtained with a suitable reduction process from the continuous density stratification structure of the full two-dimensional equations proposed by Benjamin. For a laterally unbounded fluid between horizontal rigid boundaries, the paradox about the non-conservation of horizontal total momentum is revisited, and it is shown that the pressure imbalances causing it can be intensified by three-layer setups with respect to their two-layer counterparts. The generator of the x-translational symmetry in the n-layer setup is also identified by the appropriate Hamiltonian formalism. The Boussinesq limit and a family of special solutions recently introduced by de Melo Viríssimo and Milewski are also discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


Sign in / Sign up

Export Citation Format

Share Document