central charge
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 117)

H-INDEX

34
(FIVE YEARS 6)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 101
Author(s):  
Mariano Cadoni ◽  
Andrea P. Sanna

We explore the Hawking evaporation of two-dimensional anti-de Sitter (AdS2), dilatonic black hole coupled with conformal matter, and derive the Page curve for the entanglement entropy of radiation. We first work in a semiclassical approximation with backreaction. We show that the end-point of the evaporation process is AdS2 with a vanishing dilaton, i.e., a regular, singularity-free, zero-entropy state. We explicitly compute the entanglement entropies of the black hole and the radiation as functions of the horizon radius, using the conformal field theory (CFT) dual to AdS2 gravity. We use a simplified toy model, in which evaporation is described by the forming and growing of a negative mass configuration in the positive-mass black hole interior. This is similar to the “islands” proposal, recently put forward to explain the Page curve for evaporating black holes. The resulting Page curve for AdS2 black holes is in agreement with unitary evolution. The entanglement entropy of the radiation initially grows, closely following a thermal behavior, reaches a maximum at half-way of the evaporation process, and then goes down to zero, following the Bekenstein–Hawking entropy of the black hole. Consistency of our simplified model requires a non-trivial identification of the central charge of the CFT describing AdS2 gravity with the number of species of fields describing Hawking radiation.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Lucía Córdova ◽  
Stefano Negro ◽  
Fidel I. Schaposnik Massolo

Abstract We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T$$ \overline{\mathrm{T}} $$ T ¯ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S-matrices describing the Φ1,3 integrable deformation of non-unitary minimal models $$ \mathcal{M} $$ M 2,2n+3.


Author(s):  
Jethro van Ekeren ◽  
Bely Rodríguez Morales

In this paper, we study holomorphic [Formula: see text]-graded vertex superalgebras. We prove that all such vertex superalgebras of central charge [Formula: see text] and [Formula: see text] are purely even. For the case of central charge [Formula: see text] we prove that the weight-one Lie superalgebra is either zero, of superdimension [Formula: see text], or else is one of an explicit list of 1332 semisimple Lie superalgebras.


Author(s):  
Malcolm Perry ◽  
Maria J Rodriguez

Abstract Nontrivial diffeomorphisms act on the horizon of a generic 4D black holes and create distinguishing features referred to as soft hair. Amongst these are a left-right pair of Virasoro algebras with associated charges that reproduce the Bekenstein-Hawking entropy for Kerr black holes. In this paper we show that if one adds a negative cosmological constant, there is a similar set of infinitesimal diffeomorphisms that act non-trivially on the horizon. The algebra of these diffeomorphisms gives rise to a central charge. Adding a boundary counterterm, justified to achieve integrability, leads to well-defined central charges with cL = cR. The macroscopic area law for Kerr-AdS black holes follows from the assumption of a Cardy formula governing the black hole microstates.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Yanhui ◽  
Fan Xiangpeng ◽  
Wang Tuo ◽  
Min Yingchang ◽  
Liu Yali ◽  
...  

In this work, we studied the waveforms of all lightning discharges from about 15 min. Eighty-three percent of all lightning discharges contain particular waveforms called regular pulse bursts (RPBs), which have regular microsecond-scale electric or magnetic field pulses. Maximum proportion of RPBs occur in middle or rear of lightning discharges. Prior to or after RPBs, there is always a chaotic pulse period. The analysis indicated that RPBs are caused by a secondary discharge in the fractured old breakdown channel, likeness to dart-stepped leader occuring in negative cloud-to-ground discharge (-CG). Four types of RPBs, namely, category of normal RPBs, category of back RPBs, category of symmetric RPBs, and category of reversal RPBs, were sorted in the light of the evolution of the pulse amplitude, interval between neighboring pulses and pulse polarity. In addition, the difference between normal RPBs and back RPBs was considered to be caused by the distance between neighboring charge pockets and the magnitude of the charge in every charge pocket. The symmetric RPBs were considered to be caused by a discharge channel with a large central charge area. Reversal RPBs were considered to be caused by a bending channel or superposition of two or more RPBs. We located some RPBs in a typical intra-cloud flash (IC) in three-dimensional. The analysis showed that the developing velocity of RPBs ranged from approximately 1.2 × 106 m/s to 3.0 × 106 m/s, which slower less than both of the dart leader or dart-stepped leader process from previous studies. And we found it is several meters to dozens of meters that the lengths range of discharge step which between two adjacent pulses.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Konstantin Weisenberger ◽  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We test the proposal of [1] for the holographic computation of the charged moments and the resulting symmetry-resolved entanglement entropy in different excited states, as well as for two entangling intervals. Our holographic computations are performed in U(1) Chern-Simons-Einstein-Hilbert gravity, and are confirmed by independent results in a conformal field theory at large central charge. In particular, we consider two classes of excited states, corresponding to charged and uncharged conical defects in AdS3. In the conformal field theory, these states are generated by the insertion of charged and uncharged heavy operators. We employ the monodromy method to calculate the ensuing four-point function between the heavy operators and the twist fields. For the two-interval case, we derive our results on the AdS and the conformal field theory side, respectively, from the generating function method of [1], as well as the vertex operator algebra. In all cases considered, we find equipartition of entanglement between the different charge sectors. We also clarify an aspect of conformal field theories with a large central charge and $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry used in our calculations, namely the factorization of the Hilbert space into a gravitational Virasoro sector with large central charge, and a $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody sector.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Juan F. Pedraza ◽  
Andrew Svesko ◽  
Watse Sybesma ◽  
Manus R. Visser

Abstract Quantum extremal surfaces (QES), codimension-2 spacelike regions which extremize the generalized entropy of a gravity-matter system, play a key role in the study of the black hole information problem. The thermodynamics of QESs, however, has been largely unexplored, as a proper interpretation requires a detailed understanding of backreaction due to quantum fields. We investigate this problem in semi-classical Jackiw-Teitelboim (JT) gravity, where the spacetime is the eternal two-dimensional Anti-de Sitter (AdS2) black hole, Hawking radiation is described by a conformal field theory with central charge c, and backreaction effects may be analyzed exactly. We show the Wald entropy of the semi-classical JT theory entirely encapsulates the generalized entropy — including time-dependent von Neumann entropy contributions — whose extremization leads to a QES lying just outside of the black hole horizon. Consequently, the QES defines a Rindler wedge nested inside the enveloping black hole. We use covariant phase space techniques on a time-reflection symmetric slice to derive a Smarr relation and first law of nested Rindler wedge thermodynamics, regularized using local counterterms, and intrinsically including semi-classical effects. Moreover, in the microcanonical ensemble the semi-classical first law implies the generalized entropy of the QES is stationary at fixed energy. Thus, the thermodynamics of the nested Rindler wedge is equivalent to the thermodynamics of the QES in the microcanonical ensemble.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Ramirez

Abstract Recent work has suggested an intriguing relation between quantum chaos and energy density correlations, known as pole skipping. We investigate this relationship in two dimensional conformal field theories on a finite size spatial circle by studying the thermal energy density retarded two-point function on a torus. We find that the location ω* = iλ of pole skipping in the complex frequency plane is determined by the central charge and the stress energy one-point function 〈T〉 on the torus. In addition, we find a bound on λ in c > 1 compact, unitary CFT2s identical to the chaos bound, λ ≤ 2πT. This bound is saturated in large c CFT2s with a sparse light spectrum, as quantified by [1], for all temperatures above the dual Hawking-Page transition temperature.


Author(s):  
Shinji Koshida ◽  
Kalle Kytölä

AbstractIn several examples it has been observed that a module category of a vertex operator algebra (VOA) is equivalent to a category of representations of some quantum group. The present article is concerned with developing such a duality in the case of the Virasoro VOA at generic central charge; arguably the most rudimentary of all VOAs, yet structurally complicated. We do not address the category of all modules of the generic Virasoro VOA, but we consider the infinitely many modules from the first row of the Kac table. Building on an explicit quantum group method of Coulomb gas integrals, we give a new proof of the fusion rules, we prove the analyticity of compositions of intertwining operators, and we show that the conformal blocks are fully determined by the quantum group method. Crucially, we prove the associativity of the intertwining operators among the first-row modules, and find that the associativity is governed by the 6j-symbols of the quantum group. Our results constitute a concrete duality between a VOA and a quantum group, and they will serve as the key tools to establish the equivalence of the first-row subcategory of modules of the generic Virasoro VOA and the category of (type-1) finite-dimensional representations of $${\mathcal {U}}_q (\mathfrak {sl}_2)$$ U q ( sl 2 ) .


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Nikita Nemkov ◽  
Sylvain Ribault

We revisit the critical two-dimensional Ashkin–Teller model, i.e. the \mathbb{Z}_2ℤ2 orbifold of the compactified free boson CFT at c=1c=1. We solve the model on the plane by computing its three-point structure constants and proving crossing symmetry of four-point correlation functions. We do this not only for affine primary fields, but also for Virasoro primary fields, i.e. higher twist fields and degenerate fields. This leads us to clarify the analytic properties of Virasoro conformal blocks and fusion kernels at c=1c=1. We show that blocks with a degenerate channel field should be computed by taking limits in the central charge, rather than in the conformal dimension. In particular, Al. Zamolodchikov’s simple explicit expression for the blocks that appear in four-twist correlation functions is only valid in the non-degenerate case: degenerate blocks, starting with the identity block, are more complicated generalized theta functions.


Sign in / Sign up

Export Citation Format

Share Document