White Noise Analysis and the Levy Laplacian

Author(s):  
Takeyuki Hida ◽  
Kimiaki Saito
1990 ◽  
Vol 118 ◽  
pp. 111-132 ◽  
Author(s):  
Nobuaki Obata

P. Lévy introduced, in his celebrated books [21] and [22], an infinite dimensional Laplacian called the Lévy Laplacian in connection with a number of interesting topics in variational calculus. One of the most significant features of the Lévy Laplacian is observed when it acts on the singular part of the second functional derivatives. For this reason the Lévy Laplacian has become important also in white noise analysis initiated by T. Hida [12]. On the other hand, as was pointed out by H. Yoshizawa [29], infinite dimensional rotation groups are profoundly concerned with the structure of white noise, and therefore, play essential roles in certain problems of stochastic calculus. Motivated by these works, we aim at developing harmonic analysis on infinite dimensional spaces by means of the Lévy Laplacian and infinite dimensional rotation groups.


Author(s):  
DONG MYUNG CHUNG ◽  
UN CIG JI ◽  
KIMIAKI SAITÔ

In this paper we shall discuss the existence and the uniqueness of solutions of the heat type equation and the wave type equation associated with the Lévy Laplacian acting on a domain in the space of generalized white noise functionals.


1988 ◽  
Vol 109 ◽  
pp. 91-107 ◽  
Author(s):  
Nobuaki Obata

In his book P. Lévy discussed certain permutation groups of natural numbers in connection with the theory of functional analysis. Among them the group , called the Lévy group after T. Hida, has been studied along with Hida’s theory of white noise analysis and has become very important keeping profound contact with the Lévy Laplacian which is an infinite dimensional analogue of the ordinary Laplacian.


1986 ◽  
Vol 4 ◽  
pp. S141-S152
Author(s):  
Masanori Sakuranaga ◽  
Yu-Ichiro Ando ◽  
Ken-Ichi Naka

2009 ◽  
Author(s):  
R. Léandre ◽  
Piotr Kielanowski ◽  
S. Twareque Ali ◽  
Anatol Odzijewicz ◽  
Martin Schlichenmaier ◽  
...  

2012 ◽  
Vol 26 (29) ◽  
pp. 1230014 ◽  
Author(s):  
CHRISTOPHER C. BERNIDO ◽  
M. VICTORIA CARPIO-BERNIDO

The white noise calculus originated by T. Hida is presented as a powerful tool in investigating physical and social systems. Combined with Feynman's sum-over-all histories approach, we parameterize paths with memory of the past, and evaluate the corresponding probability density function. We discuss applications of this approach to problems in complex systems and biophysics. Examples in quantum mechanics with boundaries are also given where Markovian paths are considered.


Author(s):  
NOBUHIRO ASAI ◽  
IZUMI KUBO ◽  
HUI-HSIUNG KUO

In this paper we will develop a systematic method to answer the questions (Q1) (Q2) (Q3) (Q4) (stated in Sec. 1) with complete generality. As a result, we can solve the difficulties (D1) (D2) (discussed in Sec. 1) without uncertainty. For these purposes we will introduce certain classes of growth functions u and apply the Legendre transform to obtain a sequence which leads to the weight sequence {α(n)} first studied by Cochran et al.6 The notion of (nearly) equivalent functions, (nearly) equivalent sequences and dual Legendre functions will be defined in a very natural way. An application to the growth order of holomorphic functions on ℰc will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document