noise analysis
Recently Published Documents


TOTAL DOCUMENTS

3200
(FIVE YEARS 420)

H-INDEX

69
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Concetta Caglioti ◽  
Federico Palazzetti ◽  
Lorenzo Monarca ◽  
Raffaele Lobello ◽  
Maria Rachele Ceccarini ◽  
...  

Glioblastomas (GBs) are among the most common tumors with high malignancy and invasiveness of the central nervous system. Several alterations in protein kinase and ion channel activity are involved to maintain the malignancy. Among them, phosphatidylinositol 3-kinase (PI3K) activity and intermediate conductance calcium-activated potassium (KCa3.1) current are involved in several aspects of GB biology. By using the electrophysiological approach and noise analysis, we observed that KCa3.1 channel activity is LY294002-sensitive and Wortmannin-resistant in accordance with the involvement of PI3K class IIβ (PI3KC2β). This modulation was observed also during the endogenous activation of KCa3.1 current with histamine. The principal action of PI3KC2β regulation was the reduction of open probability in intracellular free calcium saturating concentration. An explanation based on the “three-gate” model of the KCa3.1 channel by PI3KC2β was proposed. Based on the roles of KCa3.1 and PI3KC2β in GB biology, a therapeutic implication was suggested to prevent chemo- and radioresistance mechanisms.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 356
Author(s):  
Zhen Peng ◽  
Chao Bi ◽  
Lingli Fang ◽  
Longfei Xiao

For the optimization of three-phase hybrid stepper motors with complex electromagnetic structures, an optimization method is presented in this paper. The method is a combination of 3D-FEM and the Taguchi optimization method intended to reduce the dependence on FEM results during the optimization calculation. In this paper, the optimization method is used in the optimization of the tooth shape of the three-phase hybrid stepper motor, and the objective is to reduce the noise caused by harmonics in the “torque-angle characteristic” of the motor. It is clear that traditional optimization methods make it very difficult to carry out such an optimization calculation as a large number of finite element calculations have to be used in the optimization process, and the required computation time is extremely long. Using the optimization method presented in the paper, the optimization becomes feasible because the number of finite element calculations is greatly reduced and the computation time is thus greatly reduced. In order to check the effectiveness of the optimization, the waterfall diagram for noise analysis and its application to check torque ripple are also presented in the paper. Both simulation and test results show that the optimized structure can significantly reduce the motor noise caused by torque ripple. Therefore, the optimization method proposed in this paper can be an effective tool for the optimal design of high-performance motors, including stepper motors.


2022 ◽  
Author(s):  
Erica L. Jenson ◽  
Daniel J. Scheeres ◽  
Xudong Chen

2022 ◽  
Vol 17 (01) ◽  
pp. P01007
Author(s):  
J. Mitchell ◽  
T. Kovachy ◽  
S. Hahn ◽  
P. Adamson ◽  
S. Chattopadhyay

Abstract We investigate and analyze site specific systematics for the MAGIS-100 atomic interferometry experiment at Fermi National Accelerator Laboratory. As atom interferometers move out of the laboratory environment passive and active mitigation for noise sources must be implemented. To inform the research and development of the experiment design, we measure ambient temperature, humidity, and vibrations of the installation site. We find that temperature fluctuations will necessitate enclosures for critical subsystems and a temperature controlled laser room for the laser system. We also measure and analyze the vibration spectrum above and below ground for the installation site. The seismic vibration effect of gravity gradient noise is also modeled using input from a low-noise seismometer at multiple locations and a mitigation scheme is studied using a stochastic simulation and characterized by a suppression factor.


2021 ◽  
Vol 41 (6) ◽  
pp. 358-365
Author(s):  
Junwoo Kim ◽  
Gyun-Youp Kim ◽  
Ho-Kyung Kim ◽  
Changsoo Kim

2021 ◽  
pp. 203-212
Author(s):  
Claudiu Golgot ◽  
Nicolae Filip

The paper develops an ana lysis of exhaust noise for a single-cylinder diesel engine tested in laboratory conditions. The acoustic signal at the engine exhaust system, for the speed range 1,300 – 2,700 rpm was measured and recorded. The results of the noise recordings were subjected to a processing from which the variation of the noise level depending on the engine speed was obtained. Next, the physiological effect of acoustic filtrations for noise recordings was analyzed by simulation. This allowed the optimization of the exhaust noise, having identified the areas and the optimal attenuation effect. In the performed simulations, it was found that the low frequencies require the highest attenuation background.


2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Donald C. Jackson ◽  
Thomas C. Rindfleisch ◽  
Juan J. Alonso

The Metroplex Overflight Noise Analysis (MONA) project seeks to measure, analyze, and archive the ground noise generated by aircraft overflights and to provide accurate and actionable data for a variety of different purposes. On the one hand, experimental datasets collected and processed by the MONA system can serve as an openly-available database for validation and verification (V&V) of improved noise prediction methods. On the other, study conclusions derived from both the experimental and computational data can serve to inform technical discussions and options involving aircraft noise, aircraft routes, and the potential impacts of the FAA’s NextGen procedure changes on overflown communities at varying distances from the airport. Given the complex interdependencies between the noise levels perceived on the ground and the air-traffic patterns that generate the aircraft noise, a secondary goal of the MONA project is to share, through compelling visualizations, key results with broad communities of stakeholders to help generate a common understanding and reach better decisions more quickly. In this paper, we focus on the description of the MONA system architecture, its design, and its current set of capabilities. Subsequent publications will focus on the results we are obtaining though the use of the MONA system.


Stochastics ◽  
2021 ◽  
pp. 1-33
Author(s):  
Daniel Alpay ◽  
Paula Cerejeiras ◽  
Uwe Kähler

2021 ◽  
Author(s):  
Li Shao ◽  
Qing Ye ◽  
Zunyang Liu ◽  
Quan Zhou ◽  
Hao Yu

Sign in / Sign up

Export Citation Format

Share Document