Large Scale Structural Analysis on Massively Parallel Computers

Author(s):  
P. E. Bjørstad ◽  
J. Cook
1997 ◽  
Vol 08 (05) ◽  
pp. 1131-1140 ◽  
Author(s):  
J. Stadler ◽  
R. Mikulla ◽  
H.-R. Trebin

We report on implementation and performance of the program IMD, designed for short range molecular dynamics simulations on massively parallel computers. After a short explanation of the cell-based algorithm, its extension to parallel computers as well as two variants of the communication scheme are discussed. We provide performance numbers for simulations of different sizes and compare them with values found in the literature. Finally we describe two applications, namely a very large scale simulation with more than 1.23×109 atoms, to our knowledge the largest published MD simulation up to this day and a simulation of a crack propagating in a two-dimensional quasicrystal.


1992 ◽  
Vol 278 ◽  
Author(s):  
Steven R. Lustig ◽  
J.J. Cristy ◽  
D.A. Pensak

AbstractThe fast multipole method (FMM) is implemented in canonical ensemble particle simulations to compute non-bonded interactions efficiently with explicit error control. Multipole and local expansions have been derived to implement the FMM efficiently in Cartesian coordinates for soft-sphere (inverse power law), Lennard- Jones, Morse and Yukawa potential functions. Significant reductions in execution times have been achieved with respect to the direct method. For a given number, N, of particles the execution times of the direct method scale asO(N2). The FMM execution times scale asO(N) on sequential workstations and vector processors and asymptotically0(logN) on massively parallel computers. Connection Machine CM-2 and WAVETRACER-DTC parallel FMM implementations execute faster than the Cray-YMP vectorized FMM for ensemble sizes larger than 28k and 35k, respectively. For 256k particle ensembles the CM-2 parallel FMM is 12 times faster than the Cray-YMP vectorized direct method and 2.2 times faster than the vectorized FMM. For 256k particle ensembles the WAVETRACER-DTC parallel FMM is 33 times faster than the Cray-YMP vectorized direct method.


Sign in / Sign up

Export Citation Format

Share Document