fast multipole method
Recently Published Documents


TOTAL DOCUMENTS

626
(FIVE YEARS 92)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 21 (11) ◽  
pp. 281
Author(s):  
Qiao Wang ◽  
Chen Meng

Abstract We present a GPU-accelerated cosmological simulation code, PhotoNs-GPU, based on an algorithm of Particle Mesh Fast Multipole Method (PM-FMM), and focus on the GPU utilization and optimization. A proper interpolated method for truncated gravity is introduced to speed up the special functions in kernels. We verify the GPU code in mixed precision and different levels of theinterpolated method on GPU. A run with single precision is roughly two times faster than double precision for current practical cosmological simulations. But it could induce an unbiased small noise in power spectrum. Compared with the CPU version of PhotoNs and Gadget-2, the efficiency of the new code is significantly improved. Activated all the optimizations on the memory access, kernel functions and concurrency management, the peak performance of our test runs achieves 48% of the theoretical speed and the average performance approaches to ∼35% on GPU.


2021 ◽  
Vol 408 ◽  
pp. 126363
Author(s):  
Ewa Rejwer-Kosińska ◽  
Liliana Rybarska-Rusinek ◽  
Aleksandr Linkov

2021 ◽  
Author(s):  
jordan dugan ◽  
Tom J. Smy ◽  
Shulabh Gupta

An accelerated Integral Equations (IE) field solver for determining scattered fields from electrically large electromagnetic metasurfaces utilizing Fast Multipole Method (FMM) is proposed and demonstrated in 2D. In the proposed method, practical general metasurfaces are expressed using an equivalent zero thickness sheet model described using surface susceptibilities, and where the total fields around it satisfy the Generalized Sheet Transition Conditions (GSTCs). While the standard IE-GSTC offers fast field computation compared to other numerical methods, it is still computationally demanding when solving electrically large problems, with a large number of unknowns. Here we accelerate the IE-GSTC method using the FMM technique by dividing the current elements on the metasurface into near- and far-groups, where either the rigorous or approximated Green’s function is used, respectively, to reduce the computation time without losing solution accuracy. Using numerical examples, the speed improvement of the FMM IE-GSTC method O(N<sup>1.5</sup>) over the standard IE-GSTC O(N<sup>3</sup>) method is confirmed. Finally, the usefulness of the FMM IE-GSTC is demonstrated by applying it to solve electromagnetic propagation inside an electrically large radio environment with strategically placed metasurfaces to improve signal coverage in blind areas, where a standard IE-GSTC solver would require prohibitively large computational resources and long simulation times.


Sign in / Sign up

Export Citation Format

Share Document