scholarly journals Estimators for the Cauchy Distribution

Author(s):  
K. M. Hanson ◽  
D. R. Wolf
Keyword(s):  
2010 ◽  
Vol 30 (9) ◽  
pp. 2444-2448
Author(s):  
Ke-ji WANG ◽  
Zhi-wei KANG ◽  
Xin-huan LIU ◽  
Bu-zhen CHEN

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 56
Author(s):  
Haoyu Niu ◽  
Jiamin Wei ◽  
YangQuan Chen

Stochastic Configuration Network (SCN) has a powerful capability for regression and classification analysis. Traditionally, it is quite challenging to correctly determine an appropriate architecture for a neural network so that the trained model can achieve excellent performance for both learning and generalization. Compared with the known randomized learning algorithms for single hidden layer feed-forward neural networks, such as Randomized Radial Basis Function (RBF) Networks and Random Vector Functional-link (RVFL), the SCN randomly assigns the input weights and biases of the hidden nodes in a supervisory mechanism. Since the parameters in the hidden layers are randomly generated in uniform distribution, hypothetically, there is optimal randomness. Heavy-tailed distribution has shown optimal randomness in an unknown environment for finding some targets. Therefore, in this research, the authors used heavy-tailed distributions to randomly initialize weights and biases to see if the new SCN models can achieve better performance than the original SCN. Heavy-tailed distributions, such as Lévy distribution, Cauchy distribution, and Weibull distribution, have been used. Since some mixed distributions show heavy-tailed properties, the mixed Gaussian and Laplace distributions were also studied in this research work. Experimental results showed improved performance for SCN with heavy-tailed distributions. For the regression model, SCN-Lévy, SCN-Mixture, SCN-Cauchy, and SCN-Weibull used less hidden nodes to achieve similar performance with SCN. For the classification model, SCN-Mixture, SCN-Lévy, and SCN-Cauchy have higher test accuracy of 91.5%, 91.7% and 92.4%, respectively. Both are higher than the test accuracy of the original SCN.


2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


1962 ◽  
Vol 33 (4) ◽  
pp. 1267-1271 ◽  
Author(s):  
M. V. Menon
Keyword(s):  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012126
Author(s):  
Igor Vorokhobin ◽  
Iryna Zhuravska ◽  
Igor Burmaka ◽  
Inessa Kulakovska

Abstract Modern trends towards the expansion of online services lead to the need to determine the location of customers, who may also be on a moving object (vessel or aircraft, others vehicle – hereinafter the “Vehicle”). This task is of particular relevance in the fields of medicine – when organizing video conferencing for diagnosis and/or remote rehabilitation, e.g., for post-infarction and post-stroke patients using wireless devices, in education – when organizing distance learning and when taking exams online, etc. For the analysis of statistical materials of the accuracy of determining the location of a moving object, the Gaussian normal distribution is usually used. However, if the histogram of the sample has “heavier tails”, the determination of latitude and longitude’s error according to Gaussian function is not correct and requires an alternative approach. To describe the random errors of navigation measurements, mixed laws of a probability distribution of two types can be used: the first type is the generalized Cauchy distribution, the second type is the Pearson distribution, type VII. This paper has shown that it’s possible obtaining the decomposition of the error distribution density using orthogonal Hermite polynomials, without having its analytical expression. Our numerical results show that the approximation of the distribution function using the Gram-Charlier series of type A makes it possible to apply the orthogonal decomposition to describe the density of errors in navigation measurements. To compare the curves of density and its orthogonal decomposition, the density values were calculated. The research results showed that the normalized density and its orthogonal decomposition practically coincide.


Sign in / Sign up

Export Citation Format

Share Document