Compositional Verification of Multi-Agent Systems in Temporal Multi-Epistemic Logic

Author(s):  
Joeri Engelfriet ◽  
Catholijn M. Jonker ◽  
Jan Treur
2020 ◽  
Vol 34 (05) ◽  
pp. 7071-7078
Author(s):  
Francesco Belardinelli ◽  
Alessio Lomuscio ◽  
Emily Yu

We study the problem of verifying multi-agent systems under the assumption of bounded recall. We introduce the logic CTLKBR, a bounded-recall variant of the temporal-epistemic logic CTLK. We define and study the model checking problem against CTLK specifications under incomplete information and bounded recall and present complexity upper bounds. We present an extension of the BDD-based model checker MCMAS implementing model checking under bounded recall semantics and discuss the experimental results obtained.


10.29007/ntkm ◽  
2018 ◽  
Author(s):  
Frank Pfenning

Epistemic logic analyzes reasoning governing localized knowledge, and is thus fundamental to multi- agent systems. Linear logic treats hypotheses as consumable resources, allowing us to model evolution of state. Combining principles from these two separate traditions into a single coherent logic allows us to represent localized consumable resources and their flow in a distributed system. The slogan “possession is linear knowledge” summarizes the underlying idea. We walk through the design of a linear epistemic logic and discuss its basic metatheoretic properties such as cut elimination. We illustrate its expressive power with several examples drawn from an ongoing effort to design and implement a linear epistemic logic programming language for multi-agent distributed systems.


2013 ◽  
Vol 651 ◽  
pp. 943-948
Author(s):  
Zhi Ling Hong ◽  
Mei Hong Wu

In multi-agent systems, a number of autonomous pieces of software (the agents) interact in order to execute complex tasks. This paper proposes a logic framework portrays agent’s communication protocols in the multi-agent systems and a dynamic negotiation model based on epistemic default logic was introduced in this framework. In this paper, we use the constrained default rules to investigate the extension of dynamic epistemic logic, and constrained epistemic extension construct an efficient negotiation strategy via constrained epistemic default reasoning, which guarantees the important natures of extension existence and semi-monotonicity. We also specify characteristic of the dynamic updating when agent learn new knowledge in the logical framework. The method for the information sharing signify the usefulness of logical tools carried out in the dynamic process of information acquisition, and the distributed intelligent information processing show the effectiveness of reasoning default logic in the dynamic epistemic logic theory.


2002 ◽  
Vol 11 (01n02) ◽  
pp. 51-91 ◽  
Author(s):  
CATHOLIJN M. JONKER ◽  
JAN TREUR

A compositional method is presented for the verification of multi-agent systems. The advantages of the method are the well-structuredness of the proofs and the reusability of parts of these proofs in relation to reuse of components. The method is illustrated for an example multi-agent system, consisting of co-operative information gathering agents. This application of the verification method results in a formal analysis of pro-activeness and reactiveness of agents, and shows which combinations of pro-activeness and reactiveness in a specific type of information agents lead to a successful cooperation.


Author(s):  
Panagiotis Kouvaros ◽  
Alessio Lomuscio ◽  
Edoardo Pirovano

We study the problem of determining the robustness of a multi-agent system of unbounded size against specifications expressed in a temporal-epistemic logic. We introduce a procedure to synthesise automatically the maximal ratio of faulty agents that may be present at runtime for a specification to be satisfied in a multi-agent system. We show the procedure to be sound and amenable to symbolic implementation. We present an implementation and report the experimental results obtained by running this on a number of protocols from swarm robotics.


2012 ◽  
Vol 45 ◽  
pp. 1-45 ◽  
Author(s):  
F. Belardinelli ◽  
A. Lomuscio

We investigate a class of first-order temporal-epistemic logics for reasoning about multi-agent systems. We encode typical properties of systems including perfect recall, synchronicity, no learning, and having a unique initial state in terms of variants of quantified interpreted systems, a first-order extension of interpreted systems. We identify several monodic fragments of first-order temporal-epistemic logic and show their completeness with respect to their corresponding classes of quantified interpreted systems.


Sign in / Sign up

Export Citation Format

Share Document