order logic
Recently Published Documents


TOTAL DOCUMENTS

1903
(FIVE YEARS 265)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 1-30
Author(s):  
Erich Grädel ◽  
Richard Wilke

Team semantics is the mathematical basis of modern logics of dependence and independence. In contrast to classical Tarski semantics, a formula is evaluated not for a single assignment of values to the free variables, but on a set of such assignments, called a team. Team semantics is appropriate for a purely logical understanding of dependency notions, where only the presence or absence of data matters, but being based on sets, it does not take into account multiple occurrences of data values. It is therefore insufficient in scenarios where such multiplicities matter, in particular for reasoning about probabilities and statistical independencies. Therefore, an extension from teams to multiteams (i.e. multisets of assignments) has been proposed by several authors. In this paper we aim at a systematic development of logics of dependence and independence based on multiteam semantics. We study atomic dependency properties of finite multiteams and discuss the appropriate meaning of logical operators to extend the atomic dependencies to full-fledged logics for reasoning about dependence properties in a multiteam setting. We explore properties and expressive power of a wide spectrum of different multiteam logics and compare them to second-order logic and to logics with team semantics. In many cases the results resemble what is known in team semantics, but there are also interesting differences. While in team semantics, the combination of inclusion and exclusion dependencies leads to a logic with the full power of both independence logic and existential second-order logic, independence properties of multiteams are not definable by any combination of properties that are downwards closed or union closed and thus are strictly more powerful than inclusion-exclusion logic. We also study the relationship of logics with multiteam semantics with existential second-order logic for a specific class of metafinite structures. It turns out that inclusion-exclusion logic can be characterised in a precise sense by the Presburger fragment of this logic, but for capturing independence, we need to go beyond it and add some form of multiplication. Finally, we also consider multiteams with weights in the reals and study the expressive power of formulae by means of topological properties.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Rivas-Robledo

Abstract In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic (FOL). I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic (FOA). By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula (wff) pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit the notion of reference and its hyperintensional features. Then I present HYPER-REF and offer a heuristic method for determining the reference of any formula. Then I discuss some of the benefits and most salient features of HYPER-REF, including some remarks on the nature of self-reference in formal languages.


2022 ◽  
Author(s):  
Sebastian Stier

How transnational are European Parliament (EP) campaigns? Building on research on the Euro-pean public sphere and the politicisation of the EU, this study investigates to what extent the 2019 EP campaign was transnational and which factors were associated with ‘going transna-tional’. It conceptualises Twitter linkages of EP candidates as constitutive elements of a transna-tional campaign arena distinguishing interactions with EP candidates from other countries (hori-zontal transnationalisation) and interactions with the supranational European party families and lead candidates (vertical transnationalisation). The analysis of tweets sent by EP candidates from all 28 member states reveals that most linkages remain national. Despite this evidence for the second-order logic, there are still relevant variations contingent on EU positions of parties, the adoption of the Spitzenkandidaten system and socialisation in the EP. The findings have impli-cations for debates on the European public sphere and institutional reform proposals such as transnational party lists that might mitigate the EU’s democratic deficit.


Author(s):  
Gabriele Pulcini

AbstractIn Schwichtenberg (Studies in logic and the foundations of mathematics, vol 90, Elsevier, pp 867–895, 1977), Schwichtenberg fine-tuned Tait’s technique (Tait in The syntax and semantics of infinitary languages, Springer, pp 204–236, 1968) so as to provide a simplified version of Gentzen’s original cut-elimination procedure for first-order classical logic (Gallier in Logic for computer science: foundations of automatic theorem proving, Courier Dover Publications, London, 2015). In this note we show that, limited to the case of classical propositional logic, the Tait–Schwichtenberg algorithm allows for a further simplification. The procedure offered here is implemented on Kleene’s sequent system G4 (Kleene in Mathematical logic, Wiley, New York, 1967; Smullyan in First-order logic, Courier corporation, London, 1995). The specific formulation of the logical rules for G4 allows us to provide bounds on the height of cut-free proofs just in terms of the logical complexity of their end-sequent.


2021 ◽  
Author(s):  
◽  
Andrew Probert

<p>Bodlaender et al. [7] proved a converse to Courcelle's Theorem for graphs [15] for the class of chordal graphs of bounded treewidth. Hliněný [25] generalised Courcelle's Theorem for graphs to classes of matroids represented over finite fields and of bounded branchwidth. This thesis has investigated the possibility of obtaining a generalisation of chordality to matroids that would enable us to prove a converse of Hliněný's Theorem [25].  There is a variety of equivalent characterisations for chordality in graphs. We have investigated the relationship between their generalisations to matroids. We prove that they are equivalent for binary matroids but typically inequivalent for more general classes of matroids.  Supersolvability is a well studied property of matroids and, indeed, a graphic matroid is supersolvable if and only if its underlying graph is chordal. This is among the stronger ways of generalising chordality to matroids. However, to obtain the structural results that we need we require a stronger property that we call supersolvably saturated.  Chordal graphs are well known to induce canonical tree decompositions. We show that supersolvably saturated matroids have the same property. These tree decompositions of supersolvably saturated matroids can be processed by a finite state automaton. However, they can not be completely described in monadic second-order logic.  In order to express the matroids and their tree decompositions in monadic second-order logic we need to extend the logic over an extension field for each matroid represented over a finite field. We then use the fact that each maximal round modular flat of the tree decomposition for every matroid represented over a finite field, and in the specified class, spans a point in the vector space over the extension field. This enables us to derive a partial converse to Hliněný's Theorem.</p>


2021 ◽  
Author(s):  
◽  
Andrew Probert

<p>Bodlaender et al. [7] proved a converse to Courcelle's Theorem for graphs [15] for the class of chordal graphs of bounded treewidth. Hliněný [25] generalised Courcelle's Theorem for graphs to classes of matroids represented over finite fields and of bounded branchwidth. This thesis has investigated the possibility of obtaining a generalisation of chordality to matroids that would enable us to prove a converse of Hliněný's Theorem [25].  There is a variety of equivalent characterisations for chordality in graphs. We have investigated the relationship between their generalisations to matroids. We prove that they are equivalent for binary matroids but typically inequivalent for more general classes of matroids.  Supersolvability is a well studied property of matroids and, indeed, a graphic matroid is supersolvable if and only if its underlying graph is chordal. This is among the stronger ways of generalising chordality to matroids. However, to obtain the structural results that we need we require a stronger property that we call supersolvably saturated.  Chordal graphs are well known to induce canonical tree decompositions. We show that supersolvably saturated matroids have the same property. These tree decompositions of supersolvably saturated matroids can be processed by a finite state automaton. However, they can not be completely described in monadic second-order logic.  In order to express the matroids and their tree decompositions in monadic second-order logic we need to extend the logic over an extension field for each matroid represented over a finite field. We then use the fact that each maximal round modular flat of the tree decomposition for every matroid represented over a finite field, and in the specified class, spans a point in the vector space over the extension field. This enables us to derive a partial converse to Hliněný's Theorem.</p>


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Nils Vortmeier ◽  
Thomas Zeume

Given a graph whose nodes may be coloured red, the parity of the number of red nodes can easily be maintained with first-order update rules in the dynamic complexity framework DynFO of Patnaik and Immerman. Can this be generalised to other or even all queries that are definable in first-order logic extended by parity quantifiers? We consider the query that asks whether the number of nodes that have an edge to a red node is odd. Already this simple query of quantifier structure parity-exists is a major roadblock for dynamically capturing extensions of first-order logic. We show that this query cannot be maintained with quantifier-free first-order update rules, and that variants induce a hierarchy for such update rules with respect to the arity of the maintained auxiliary relations. Towards maintaining the query with full first-order update rules, it is shown that degree-restricted variants can be maintained.


2021 ◽  
Author(s):  
Steven Obua

Abstraction Logic is introduced as a foundation for Practical Types and Practal. It combines the simplicity of first-order logic with direct support for variable binding constants called abstractions. It also allows free variables to depend on parameters, which means that first-order axiom schemata can be encoded as simple axioms. Conceptually abstraction logic is situated between first-order logic and second-order logic. It is sound with respect to an intuitive and simple algebraic semantics. Completeness holds for both intuitionistic and classical abstraction logic, and all abstraction logics in between and beyond.


Sign in / Sign up

Export Citation Format

Share Document