Evolutionarily stable seasonal timing of univoltine and bivoltine insects

1994 ◽  
pp. 69-89 ◽  
Author(s):  
Yoh Iwasa ◽  
Hideo Ezoe ◽  
Atsushi Yamauchi
Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 877-889
Author(s):  
A B Harper

Abstract The theory of evolutionarily stable strategies (ESS) predicts the long-term evolutionary outcome of frequency-dependent selection by making a number of simplifying assumptions about the genetic basis of inheritance. I use a symmetrized multilocus model of quantitative inheritance without mutation to analyze the results of interactions between pairs of related individuals and compare the equilibria to those found by ESS analysis. It is assumed that the fitness changes due to interactions can be approximated by the exponential of a quadratic surface. The major results are the following. (1) The evolutionarily stable phenotypes found by ESS analysis are always equilibria of the model studied here. (2) When relatives interact, one of the two conditions for stability of equilibria differs between the two models; this can be accounted for by positing that the inclusive fitness function for quantitative characters is slightly different from the inclusive fitness function for characters determined by a single locus. (3) The inclusion of environmental variance will in general change the equilibrium phenotype, but the equilibria of ESS analysis are changed to the same extent by environmental variance. (4) A class of genetically polymorphic equilibria occur, which in the present model are always unstable. These results expand the range of conditions under which one can validly predict the evolution of pairwise interactions using ESS analysis.


Sign in / Sign up

Export Citation Format

Share Document