Agents-Based Service Restoration in Electrical Secondary Distribution Network

Author(s):  
Rukia J. Mwifunyi ◽  
Nerey H. Mvungi ◽  
Mussa M. Kissaka
2013 ◽  
Vol 303-306 ◽  
pp. 1276-1279
Author(s):  
Hai Na Rong ◽  
Yan Hui Qin

Power network reconfiguration is an important process in the improvement of operating conditions of a power system and in planning studies, service restoration and distribution automation when remote-controlled switches are employed. This paper presents the use of a quantum-inspired evolutionary algorithm to solve the distribution network reconfiguration problem. The quantum- inspired evolutionary algorithm is the combination product of quantum computing and evolutionary computation and is suitable for a class of integer programming problems such as the distribution network reconfiguration problem. After the analysis and formulation of the distribution network reconfiguration problem, the effectiveness and feasibility of the introduced method is verified by a large number of experiments.


2014 ◽  
Vol 672-674 ◽  
pp. 1175-1178
Author(s):  
Guang Min Fan ◽  
Ling Xu Guo ◽  
Wei Liang ◽  
Hong Tao Qie

The increasingly serious energy crisis and environmental pollution problems promote the large-scale application of microgrids (MGs) and electric vehicles (EVs). As the main carrier of MGs and EVs, distribution network is gradually presenting multi-source and active characteristics. A fast service restoration method of multi-source active distribution network with MGs and EVs is proposed in this paper for service restoration of distribution network, which takes effectiveness, rapidity, economy and reliability into consideration. Then, different optimal power flow (OPF) models for the service restoration strategy are constructed separately to minimize the network loss after service restoration. In addition, a genetic algorithm was introduced to solve the OPF model. The analysis of the service restoration strategy is carried out on an IEEE distribution system with three-feeder and eighteen nodes containing MGs and EVs, and the feasibility and effectiveness are verified


Author(s):  
Swapna Mansani ◽  
R. Y. Udaykumar ◽  
Santoshkumar ◽  
M. A. Asha Rani ◽  
S. Sreejith

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3333 ◽  
Author(s):  
Duy Le ◽  
Duong Bui ◽  
Cao Ngo ◽  
Anh Le

A smart grid concept has been defined in recent years, which emphasizes the importance on smart protection and measurement devices, reliable data communication and high security, optimal energy management system, and fault detection, location, isolation and service restoration (FLISR) of distribution networks (DNs). The main objectives of the FLISR approach are to achieve fast fault processing time, reduce the minimum number of interrupted customers, and improve the power supply reliability of the distribution. The conventional FLISR approach is to use signals of fault indicators (FIs) with distribution network states. The discrete installation of FIs to switches or reclosers may slow the processing time of fault detection and location, so it is necessary to develop a more efficient FLISR approach for smart distribution networks using functions of feeder terminal units (FTUs). In this paper, pick-up and tripping signals of overcurrent (OC) relays in combination with distribution grid states (e.g., switching status of devices, loss of voltage…) sent from feeder terminal units (FTUs) are used to detect and locate different fault types. Fault isolation and service restoration of black-out areas are then performed by solving an objective function with two main constraints, including (i) restoring the possible maximum number of out-of-service loads; and (ii) limiting the minimum number of switching operation. Thirteen performance factors (PF) are used for the post-fault service restoration process, consisting of: (i) Power Flow Violations (PFV), (ii) Bus Voltage Violations (BVV), (iii) Total Operation Cost (TOC), (iv) Lost Power (LP), (v) Outage Customer (OC), (vi) Number of Switching Steps (NSS), (vii) Power Losses (LOSS); (viii) Customer Minutes Interruption (CMI), (ix) Load Minutes Interruption (LMI), (x) MAIFI, (xi) SAIFI, (xii) SAIDI, and (xiii) Protection Validation (PRV). E-Terra platform of a distribution management system (DMS) is used to implement the proposed FLISR approach. Simulation and experiment results from a real 22 kV distribution network are also analysed to validate this FLISR approach. As a result, the novel FLISR approach has the ability to identify effectively the over-reaching of OC relays, indicate a mis-coordination risk of adjacent protection devices on the same feeder, and get the total processing time of fault detection, location and isolation as well as ranking all possible service restoration plans in distribution network at less than two minutes.


Sign in / Sign up

Export Citation Format

Share Document