Impact of Introducing Small Scale Distributed Generation on Technical Losses in a Secondary Distribution Network

Author(s):  
Ismaël Adam Essackjee ◽  
Robert T. F. Ah King
2019 ◽  
Vol 8 (4) ◽  
pp. 6357-6363

The reliability of distribution network can be improved with the penetration of small scale distributed generation (DG) unit to the distribution grid. Nevertheless, the location and sizing of the DG in the distribution network have always become a topic of debate. This problem arises as different capacity of DG at various location can affect the performance of the entire system. The main objective of this study is to recommend a suitable size of DG to be placed at the most appropriate location for better voltage profile and minimum power loss. Therefore, this paper presents an analytical approach with a fixed DG step size of 500 kW up to 4500 kW DG to analyses the effect of a single P-type DG in IEEE 33 bus system with consideration of system power loss and voltage profile. Four scenarios have been selected for discussions where Scenario 1: 3500 kW DG placed at node 3; Scenario 2: 2500 kW DG placed at node 6; Scenario 3: 1000 kW DG placed at node 18 and Scenario 4: 3000 kW DG placed at node 7. Results show that all the four scenarios are able to reduce the power loss and improve the voltage profile however Scenario 4 has better performance where it complies with minimum voltage requirement and minimizing the system power loss.


2020 ◽  
Vol 56 (3) ◽  
pp. 3178-3195 ◽  
Author(s):  
Ramanuja Panigrahi ◽  
Santanu K. Mishra ◽  
Suresh C. Srivastava ◽  
Anurag K. Srivastava ◽  
Noel N. Schulz

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5315
Author(s):  
Rade Čađenović ◽  
Damir Jakus

High penetration of small-scale distributed energy sources into the distribution network increase negative impacts related to power quality causing adverse conditions. This paper presents a mathematical model that maximizes distribution network hosting capacity through optimal distributed generation capacity allocation and control and grid reconfiguration. In addition to this, the model includes on-load tap changer control for stabilization of grid voltage conditions primarily in grid operating conditions related to voltage rise problems, which can limit grid hosting capacity. Moreover, the objective function allows the possibility of energy transfer between distribution and transmission grids. The proposed model considers alternative grid connection points for distributed generation and determines optimal connection points as well as install capacity while considering network operating limits. The model is cast as a multiperiod second-order cone linear program and involves aspects of active power management. The model is tested on a modified IEEE 33 bus test network.


2009 ◽  
Vol 129 (6) ◽  
pp. 733-744 ◽  
Author(s):  
Shoji Kawasaki ◽  
Yasuhiro Hayashi ◽  
Junya Matsuki ◽  
Hirotaka Kikuya ◽  
Masahide Hojo

Sign in / Sign up

Export Citation Format

Share Document