Electric Vehicles
Recently Published Documents


TOTAL DOCUMENTS

17687
(FIVE YEARS 10991)

H-INDEX

158
(FIVE YEARS 76)

2021 ◽  
Author(s):  
MJ Booysen ◽  
Chris Abraham ◽  
Innocent Ndibatya ◽  
Arnold Rix

Minibus taxis are ubiquitous in the developing cities of the Global South. This versatile, and somewhat chaotic public transport system is now faced with the need to move to renewable energy. But the looming roll-out of electric vehicles poses a threat to the already fragile electrical grids of African cities. This chapter evaluates the energy requirements of decarbonisation and evaluates two types of data, passenger-based and vehicle-based, from research in South Africa that has modelled these taxis. Using these two data capture methods, we assess the energy requirements and charging opportunities for electric minibus paratransit in three African cities and compare the results of the two methods to assess their suitability for planning minibus taxi electrification.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ming-An Chung ◽  
Chih-Wei Yang

A miniaturized internal antenna with monopole structure is constituted, including three radiating strips of a compact prototype and a back-coupling pad to improve the impedance matching, which achieves a wide bandwidth of 2.972 GHz between the operating frequencies of 2315–5285 MHz, and is introduced and researched. There is an urgent need for a complete frequency-continuous and large bandwidth design in the current wireless communication design to achieve a multimode, multifrequency, physical phenomenon design with large bandwidth and continuous operating frequency. The recommended antenna provides a broadband operation in an electric vehicles (EVs) and Internet of Things (IoT) devices application embedded in the wireless communication standard for 5G, LTE, V2X, WLAN, WiMAX, Sirius/XM Radio, V2X, and DSRC to support the multiband application. This design is embedded side edge of overall placement in the device and is integrated applicable to the trend of heterogeneous wireless multiple access networks in electric vehicle and Internet of Things system devices, which covered the 5G with supporting the band of n7/n38/n40/n53/n77/n78/n79/n90, the 4G with supporting the band of 7/38/40/41/42/43/48/67, the V2X and DSRC for the operating frequencies between 2500 and 5000 MHz, the Sirius/XM Radio for the operating frequencies of 2320–2345 MHz, the ISM band of WiFi and BT covering the band of 2450–2483.5 and 5150–5350 MHz, and the WiMAX also supporting the band of 2300–2690 and 3400–3690 MHz. Moreover, the compact antenna manufactured an FR4 material with the antenna area of 5 × 10 × 0.8 mm3 and the ground area of 33.5 × 10 × 0.8 mm3. The proposed design better benefits a narrow space on the PCB with a low profile and is easy to make with a circuit board design.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2973
Author(s):  
Tong Li ◽  
Hai Zhao ◽  
Shihao Wang ◽  
Chao Yang ◽  
Bonan Huang

In the last few years, there has been an exponential increase in the penetration of electric vehicles (EVs) due to their eco-friendly nature and ability to support bidirectional energy exchanges with the power cyber-physical system. However, the existing research only proposes energy management in terms of vehicle-to-grid (V2G) support using fleets of EVs, which lacks research on EV attacks. Motivated by these facts, this paper first introduces a new data integrity attack strategy for a consistent energy management algorithm which considers electric vehicles as energy storage. In particular, we consider EV aggregators as energy storage with source-charge bidirectional characteristics. The attacker carefully constructs false information to manipulate aggregators to participate in scheduling and obtaining additional benefits on the premise of meeting the constraints of microgrid and various devices by attacking the consistent algorithm. Then, we propose a disturbance rejection control strategy combining privacy protection protocols and an isolation mechanism. We analyze the effectiveness of the proposed encryption mechanism and verify the feasibility of the isolation control algorithm by simulation and comparison.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7954
Author(s):  
Robby Dwianto Widyantara ◽  
Muhammad Adnan Naufal ◽  
Poetro Lebdo Sambegoro ◽  
Ignatius Pulung Nurprasetio ◽  
Farid Triawan ◽  
...  

Temperature management for battery packs installed in electric vehicles is crucial to ensure that the battery works properly. For lithium-ion battery cells, the optimal operating temperature is in the range of 25 to 40 °C with a maximum temperature difference among battery cells of 5 °C. This work aimed to optimize lithium-ion battery packing design for electric vehicles to meet the optimal operating temperature using an air-cooling system by modifying the number of cooling fans and the inlet air temperature. A numerical model of 74 V and 2.31 kWh battery packing was simulated using the lattice Boltzmann method. The results showed that the temperature difference between the battery cells decreased with the increasing number of cooling fans; likewise, the mean temperature inside the battery pack decreased with the decreasing inlet air temperature. The optimization showed that the configuration of three cooling fans with 25 °C inlet air temperature gave the best performance with low power required. Even though the maximum temperature difference was still 15 °C, the configuration kept all battery cells inside the optimum temperature range. This finding is helpful to develop a standardized battery packing module and for engineers in designing low-cost battery packing for electric vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2940
Author(s):  
Alex Caines ◽  
Aritra Ghosh ◽  
Ankur Bhattacharjee ◽  
Adam Feldman

The UK government has set a ban on the sale of new petrol and diesel cars and vans by 2030. This will create a shift to electric vehicles. which will present a substantial impact on the grid. Therefore, methods to reduce the charging station’s impact on the grid have to be developed. This paper’s objective is to evaluate how integrating solar and storage affects a charging station’s dependence on the grid. A photovoltaic electric vehicle charging station (PVEVCS) is first designed, and then four charging profiles are selected to assess the station through a simulation using MATLAB. The array produces 3257 MWh/yr which, on average, offsets 40% of the electric vehicle (EV) load experienced by the station. Furthermore, with the integration of storage, the dependence is further reduced by 10% on average. The system also exported energy to the grid, offsetting close to all the energy imported.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7945
Author(s):  
Guido Ala ◽  
Ilhami Colak ◽  
Gabriella Di Filippo ◽  
Rosario Miceli ◽  
Pietro Romano ◽  
...  

In recent years, the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently, the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug-in HEV (PHEV) electric cars, but hydrogen-based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV, particular attention should be paid to hydrogen technology, i.e., FCEVs, which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug-in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector, identifying a growing trend in the expansion of hydrogen infrastructure, although at this time, it is still at an early stage of development. At the moment, the cost of building the infrastructure is still high, but on the basis of medium/long-term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely, the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear, since the charging times are reduced, compared to charging from an electric charging post, and the long-distance voyage is made easier, as the autonomy is much larger, i.e., the psycho-sociological anxiety is avoided. Therefore, the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory, that is the propensity of citizens to technological change. Subsequently, using current data on EV development and comparing information from recent years, this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis), with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained, the districts of Lisbon, Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.


Sign in / Sign up

Export Citation Format

Share Document