Solar-cycle phenomena in cosmic-ray intensity: Differences between even and odd cycles

1988 ◽  
Vol 42 (3) ◽  
pp. 233-244 ◽  
Author(s):  
H. Mavromichalaki ◽  
E. Marmatsouri ◽  
A. Vassilaki
1984 ◽  
Vol 5 (4) ◽  
pp. 590-593 ◽  
Author(s):  
A. G. Fenton ◽  
K. B. Fenton ◽  
J. E. Humble

Although transient decreases in cosmic ray intensity of the type first reported by Forbush (1937) have been observed and studied for more than 40 years using a variety of detectors at many locations, from medium depths underground to those on spacecraft far from Earth, the precise nature of the physical process causing these events is not yet clear (see, for example, McKibben 1981).


2011 ◽  
Vol 48 (4) ◽  
pp. 66-70
Author(s):  
R. Agarwal ◽  
R. Mishra

Galactic Cosmic Ray Modulation Up to Recent Solar Cycles Cosmic ray neutron monitor counts obtained by different ground-based detectors have been used to study the galactic cosmic ray modulation during the last four solar activity cycles. Since long, systematic correlative studies have been per-formed to establish a significant relationship between the cosmic ray intensity and different helio-spheric activity parameters, and the study is extended to a recent solar cycle (23). In the present work, the yearly average of 10.7 cm solar radio flux and the interplanetary magnetic field strength (IMF, B) have been used to find correlation of the yearly average cosmic ray intensity derived from different neutron monitors. It is found that for four solar cycles (20-23) the cosmic ray intensity is anti-correlated with the 10.7 cm solar radio flux and the IMF, B value with some discrepancy. However, this is in a good positive correlation with the flux of mentioned wavelength for four different solar cycles. The IMF, B shows a weak correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Meena Pokharia ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the variation of very slow speed solar wind streams (VSSSWS) with the cosmic ray intensity (CRI) and Ae index for solar cycle 24 (2008-2013). A Chree analysis by the superposed epoch method has been done in the study. The results of the present analysis showed that VSSSWS are not able to produce decreases in CRI. The prime source of the variation in magnetic activity near aurora zone is the wind interaction with the magnetosphere, but the speed of VSSSWS is low enough to produce any significant impact on aurora zone magnetic activity.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Meena Pokharia ◽  
Lalan Prasad

The aim of this paper is to investigate the association of the variation of very slow speed solar wind streams (VSSSWS) with the cosmic ray intensity (CRI) and Ae index for solar cycle 24 (2008-2013). A Chree analysis by the superposed epoch method has been done in the study. The results of the present analysis showed that VSSSWS are not able to produce decreases in CRI. The prime source of the variation in magnetic activity near aurora zone is the wind interaction with the magnetosphere, but the speed of VSSSWS is low enough to produce any significant impact on aurora zone magnetic activity


Sign in / Sign up

Export Citation Format

Share Document