cycle 24
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 235)

H-INDEX

31
(FIVE YEARS 5)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Marlon Núñez

The prediction of solar energetic particle (SEP) events may help to improve the mitigation of adverse effects on humans and technology in space. UMASEP (University of Málaga Solar particle Event Predictor) is an empirical model scheme that predicts SEP events. This scheme is based on a dual-model approach. The first model predicts well-connected events by using an improved lag-correlation algorithm for analyzing soft X-ray (SXR) and differential proton fluxes to estimate empirically the Sun–Earth magnetic connectivity. The second model predicts poorly connected events by analyzing the evolution of differential proton fluxes. This study presents the evaluation of UMASEP-10 version 2, a tool based on the aforementioned scheme for predicting all >10 MeV SEP events, including those without associated flare. The evaluation of this tool is presented in terms of the probability of detection (POD), false alarm ratio (FAR) and average warning time (AWT). The best performance was achieved for the solar cycle 24 (i.e., 2008–2019), obtaining a POD of 91.1% (41/45), a FAR of 12.8% (6/47) and an AWT of 2 h 46 min. These results show that UMASEP-10 version 2 obtains a high POD and low FAR mainly because it is able to detect true Sun–Earth magnetic connections.


2022 ◽  
Vol 924 (2) ◽  
pp. 59
Author(s):  
J. Y. Lu ◽  
Y. T. Xiong ◽  
K. Zhao ◽  
M. Wang ◽  
J. Y. Li ◽  
...  

Abstract In this paper, a novel bimodal model to predict a complete sunspot cycle based on comprehensive precursor information is proposed. We compare the traditional 13 month moving average with the Gaussian filter and find that the latter has less missing information and can better describe the overall trend of the raw data. Unlike the previous models that usually only use one precursor, here we combine the implicit and geometric information of the solar cycle (peak and skewness of the previous cycle and start value of the predicted cycle) with the traditional precursor method based on the geomagnetic index and adopt a multivariate linear approach with a higher goodness of fit (>0.85) in the fitting. Verifications for cycles 22–24 demonstrate that the model has good performance in predicting the peak and peak occurrence time. It also successfully predicts the complete bimodal structure for cycle 22 and cycle 24, showing a certain ability to predict whether the next solar cycle is unimodal or bimodal. It shows that cycle 25 is a single-peak structure and that the peak will come in 2024 October with a peak of 145.3.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 69
Author(s):  
Oswald Didier Franck Grodji ◽  
Vafi Doumbia ◽  
Paul Obiakara Amaechi ◽  
Christine Amory-Mazaudier ◽  
Kouassi N’guessan ◽  
...  

In this paper, we investigated the impact of solar flares on the horizontal (H), eastward (Y) and vertical (Z) components of the geomagnetic field during solar cycles 23 and 24 (SC23/24) using data of magnetometer measurements on the sunlit side of the Earth. We examined the relation between sunspot number and solar flare occurrence of various classes during both cycles. During SC23/24, we obtained correlation coefficient of 0.93/0.97, 0.96/0.96 and 0.60/0.56 for C-class, M-class and X-class flare, respectively. The three components of the geomagnetic field reached a peak a few minutes after the solar flare occurrence. Generally, the magnetic crochet of the H component was negative between the mid-latitudes and Low-latitudes in both hemispheres and positive at low latitudes. By contrast, the analysis of the latitudinal variation of the Y and Z components showed that unlike the H component, their patterns of variations were not coherent in latitude. The peak amplitude of solar flare effect (sfe) on the various geomagnetic components depended on many factors including the local time at the observing station, the solar zenith angle, the position of the station with respect to the magnetic equator, the position of solar flare on the sun and the intensity of the flare. Thus, these peaks were stronger for the stations around the magnetic equator and very low when the geomagnetic field components were close to their nighttime values. Both cycles presented similar monthly variations with the highest sfe value (ΔHsfe = 48.82 nT for cycle 23 and ΔHsfe = 24.68 nT for cycle 24) registered in September and lowest in June for cycle 23 (ΔHsfe = 8.69 nT) and July for cycle 24 (ΔHsfe = 10.69 nT). Furthermore, the sfe was generally higher in cycle 23 than in cycle 24.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-11
Author(s):  
Ahmed Kadhim Hasan

This paper compare  the accurecy of HF propagation  prediction programs for  HF circuits links between Iraq and  different points world wide  during August 2018 when  solar cycle 24 (start 2009 end 2020) is at minimun activity and also find out the best communication mode  used. The prediction   programs like Voice of America Coverage Analysis Program (VOACAP) and ITU Recommendation RS 533 (REC533 )  had been used to generat HF circuit link  parameters like Maximum Usable Frequency ( MUF) and Frequency of Transsmision (FOT) .Depending  on the predicted parameters (data)  , real radio contacts had been done using a radio transceiver from Icom  model IC 7100 with 100W RF power, tuner box and homemade  dipole antenna of 10 m length and  8m height above ground. From  correlation between the predicted data and observed data  the result was not accurate .


2021 ◽  
Vol 923 (1) ◽  
pp. 105
Author(s):  
Yan Li ◽  
Shaosui Xu ◽  
Janet G. Luhmann ◽  
Benoit Lavraud

Abstract We study solar wind anomalies and their associations with solar wind structures using the STEREO solar wind and suprathermal electron (STE) data from IMPACT and PLASTIC. We define solar wind anomalies as temporary and local excursions from the average solar wind state, regardless of their origins, for six anomalies: sunward strahls, counterstreaming suprathermal electrons, suprathermal electron depletions, nearly radial magnetic field episodes, anomalously low proton temperatures, and anomalously low proton beta. We first establish the solar wind synoptic contour displays, which show the expected variations in solar wind structure during the solar cycle: recurrent corotating heliospheric magnetic field (HMF) and stream structures are dominant during solar quiet times around the solar minimum (2008 December) preceding cycle 24, while complex structures characterize solar active times around the solar maximum (2014 April). During the declining phase of the cycle (2016–2019), the stream structures remain complex, but the HMF sectors show the structures of the solar minimum. We then systematically study the six anomalies by analyzing the STE data using automated procedures. All anomalies present some degree of dependence on the large-scale solar wind structure, especially around the solar minimum, implying that the solar wind structure plays a role in either the generation or transportation of these anomalies. One common feature of all of the anomalies is that the distributions of the durations of the anomalous episodes all peak at the 1 hr data resolution, but monotonically decrease over longer durations, which may arguably imply that solar anomalies occur on a continuum of temporal and spatial scales.


2021 ◽  
Author(s):  
Prithvi Raj Singh ◽  
A. I. Saad Farid ◽  
Y. P. Singh ◽  
A. K. Singh ◽  
Ayman A. Aly

Abstract To study the solar rotational oscillation on daily averaged time series of solar activity proxies: sunspot number (SSN), modified coronal index (MCI), solar flare index (FI), and cosmic ray intensity (CRI) are subjected to Lomb/Scargle periodogram, and continuous wavelet transform. For this purpose, we have used data of all the considered parameters from 2012 to 2015, which covers the maximum phase including the polarity reversal period of the solar cycle 24. Both spectral analysis techniques are carried out to study the behavior of 27-days on the time scale of the synodic period and to follow their evolution throughout the epoch. Further, we have used R package RobPer (least square regression) techniques and obtained a significant true period ~27 days is present in this study. It is noted that the ~27-day period of solar activity parameters and cosmic rays is much prominent during the examined period.


2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Nariaki V. Nitta ◽  
Tamitha Mulligan ◽  
Emilia K. J. Kilpua ◽  
Benjamin J. Lynch ◽  
Marilena Mierla ◽  
...  

AbstractGeomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed “stealth CMEs”. In this review, we focus on these “problem” geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst $< -50$ < − 50  nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels.


2021 ◽  
Vol 61 (6) ◽  
pp. 801-809
Author(s):  
V. N. Ishkov

Abstract The problem of the distribution of extreme and very strong magnetic storms with intensities (G5, G4) in the first cycles (12 and 24) of epochs of lowered solar activity was considered based on homogeneous series of the geomagnetic index Aa with allowance for the modern scale of the intensity of disturbances in the near-Earth space and the scenario of solar cyclicity. The significant decrease in the number of such events and active solar phenomena in the last cycle may indicate that the sunspot and flare activity in solar cycle 12 was significantly higher than that in cycle 24, but it was significantly lower than in solar cycles of the epoch of increased solar activity.


2021 ◽  
Vol 37 (6) ◽  
pp. 310-325
Author(s):  
A. I. Bilinsky ◽  
O. A. Baran ◽  
M. I. Stodilka ◽  
Ye. B. Vovchyk ◽  
M. M. Koval’chuk

Sign in / Sign up

Export Citation Format

Share Document