Pseudo-convex hypersurfaces

1973 ◽  
Vol 1 (2) ◽  
Author(s):  
F.J. Flaherty
OPSEARCH ◽  
1998 ◽  
Vol 35 (1) ◽  
pp. 32-44 ◽  
Author(s):  
S. K. Mishra

1963 ◽  
Vol 78 (1) ◽  
pp. 112 ◽  
Author(s):  
J. J. Kohn
Keyword(s):  

2001 ◽  
Vol 12 (08) ◽  
pp. 877-890 ◽  
Author(s):  
A. SUKHOV ◽  
A. TUMANOV

We give a construction of stationary discs and the indicatrix for manifolds of higher codimension which is a partial analog of L. Lempert's theory of stationary discs for strictly convex hypersurfaces. This leads to new invariants of the CR structure in higher codimension linked with the contact structure of the conormal bundle.


2018 ◽  
Vol 18 (4) ◽  
pp. 763-774
Author(s):  
Hui Liu ◽  
Gaosheng Zhu

AbstractLet {n\geq 2} be an integer, {P=\mathrm{diag}(-I_{n-\kappa},I_{\kappa},-I_{n-\kappa},I_{\kappa})} for some integer {\kappa\in[0,n]}, and let {\Sigma\subset{\mathbb{R}}^{2n}} be a partially symmetric compact convex hypersurface, i.e., {x\in\Sigma} implies {Px\in\Sigma}, and {(r,R)}-pinched. In this paper, we prove that when {{R/r}<\sqrt{5/3}} and {0\leq\kappa\leq[\frac{n-1}{2}]}, there exist at least {E(\frac{n-2\kappa-1}{2})+E(\frac{n-2\kappa-1}{3})} non-hyperbolic P-invariant closed characteristics on Σ. In addition, when {{R/r}<\sqrt{3/2}}, {[\frac{n+1}{2}]\leq\kappa\leq n} and Σ carries exactly nP-invariant closed characteristics, then there exist at least {2E(\frac{2\kappa-n-1}{4})+E(\frac{n-\kappa-1}{3})} non-hyperbolic P-invariant closed characteristics on Σ, where the function {E(a)} is defined as {E(a)=\min{\{k\in{\mathbb{Z}}\mid k\geq a\}}} for any {a\in\mathbb{R}}.


2008 ◽  
Vol 142 (2) ◽  
pp. 283-312 ◽  
Author(s):  
Jan Metzger ◽  
Felix Schulze

Sign in / Sign up

Export Citation Format

Share Document