Computer simulation of shared input among projection neurons in the dorsal cochlear nucleus

1996 ◽  
Vol 74 (5) ◽  
pp. 413-425 ◽  
Author(s):  
Kevin A. Davis ◽  
Herbert F. Voigt
2009 ◽  
Vol 102 (2) ◽  
pp. 1287-1295 ◽  
Author(s):  
Jaime G. Mancilla ◽  
Paul B. Manis

Individual neurons have been shown to exhibit target cell-specific synaptic function in several brain areas. The time course of the postsynaptic conductances (PSCs) strongly influences the dynamics of local neural networks. Cartwheel cells (CWCs) are the most numerous inhibitory interneurons in the dorsal cochlear nucleus (DCN). They are excited by parallel fiber synapses, which carry polysensory information, and in turn inhibit other CWCs and the main projection neurons of the DCN, pyramidal cells (PCs). CWCs have been implicated in “context-dependent” inhibition, producing either depolarizing (other CWCs) or hyperpolarizing (PCs) post synaptic potentials. In the present study, we used paired whole cell recordings to examine target-dependent inhibition from CWCs in neonatal rat DCN slices. We found that CWC inhibitory postsynaptic potentials (IPSPs) onto PCs are large (1.3 mV) and brief (half-width = 11.8 ms), whereas CWC IPSPs onto other CWCs are small (0.2 mV) and slow (half-width = 36.8 ms). Evoked IPSPs between CWCs exhibit paired-pulse facilitation, while CWC IPSPs onto PCs exhibit paired-pulse depression. Perforated-patch recordings showed that spontaneous IPSPs in CWCs are hyperpolarizing at rest with a mean estimated reversal potential of −67 mV. Spontaneous IPSCs were smaller and lasted longer in CWCs than in PCs, suggesting that the kinetics of the receptors are different in the two cell types. These results reveal that CWCs play a dual role in the DCN. The CWC-CWC network interactions are slow and sensitive to the average rate of CWC firing, whereas the CWC-PC network is fast and sensitive to transient changes in CWC firing.


1995 ◽  
Vol 73 (2) ◽  
pp. 550-561 ◽  
Author(s):  
K. Parham ◽  
D. O. Kim

1. We examined the spontaneous and sound-evoked discharge characteristics of 20 complex-spiking units recorded in the dorsal cochlear nucleus (DCN) of 15 unanesthetized, decerebrate cats. 2. The extracellularly recorded complex spikes consisted of bursts of two to five action potentials whose size gradually decreased during the burst. Complex spikes were observed both in the spontaneous and sound-evoked activity of the units in our sample. 3. The spontaneous rates (SRs) of DCN complex-spiking units ranged from 0 to 30 spikes/s. Spontaneous activity consisted of complex and simple (i.e., the common single neuronal action potential) spikes. Comparison of the SR distributions of the DCN complex-spiking units with that of a total sample of 194 DCN units (from 9 cats) suggests that the complex-spiking units tended to be in the lower half of the DCN SR distribution. 4. Sound-evoked discharges could consist of both complex and simple spikes. On the basis of their sound-driven responses, we divided the DCN complex-spiking units into two groups. The majority (15 of 20, 75%) were weakly driven by pure tones and inhibited by broadband noise. They tended to have broad response areas. Their response latencies to pure tone and noise stimuli were relatively long (10-20 ms). The recording depths of these units tended to be superficial (i.e., 10 of 15 units were located within 400 microns of the dorsal surface of the DCN). A minority (5 of 20, 25%) of the complex-spiking units were strongly driven by pure tone and broadband noise stimuli. These units had more clearly defined excitatory regions of response areas than the weakly driven units. Their response latencies to pure tone and noise stimuli were short (< 10 ms). The recording depths of these units tended to be deeper (i.e., 4 of 5 units were located at 400-700 microns) than those of the weakly driven units. 5. Intracellular recording and labeling studies of in vitro DCN slice preparations have correlated complex spikes with the superficially located cartwheel cells. Given the complex spikes of the units, many of which were located superficially, we suggest that our sample, particularly the weakly driven group of neurons, corresponds to the cartwheel cells. 6. Cartwheel cells are putative inhibitory interneurons whose axons primarily contact on the main projection neurons of DCN, the fusiform cells. The present finding of sound-evoked discharges by the superficially located complex-spiking units suggests that cartwheel cells should play a role in modifying the sound-evoked responses of the fusiform cells.


2014 ◽  
Vol 92 (11) ◽  
pp. 1466-1477 ◽  
Author(s):  
Hao Luo ◽  
Edward Pace ◽  
Xueguo Zhang ◽  
Jinsheng Zhang

Sign in / Sign up

Export Citation Format

Share Document