Receptive field organization of simple cells in cat striate cortex

1981 ◽  
Vol 42 (1) ◽  
Author(s):  
P. Heggelund
1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


1985 ◽  
Vol 53 (5) ◽  
pp. 1158-1178 ◽  
Author(s):  
B. O. Braastad ◽  
P. Heggelund

The functional organization of the receptive field of neurons in striate cortex of kittens from 8 days to 3 mo of age was studied by extracellular recordings. A quantitative dual-stimulus technique was used, which allowed for analysis of both enhancement and suppression zones in the receptive field. Furthermore the development of orientation selectivity was studied quantitatively in the same cells. Already in the youngest kittens the receptive fields were spatially organized like adult fields, with a central zone and adjacent flanks that responded in opposite manner to the light stimulus. The relative suppression in the subzones was as strong as in adult cells. Both simple and complex cells were found from 8 days. The receptive fields were like magnified adult fields. The width of the dominant discharge-field zone and the distance between the positions giving maximum discharge and maximum suppression decreased with age in the same proportions. The decrease could be explained by a corresponding decrease of the receptive-field-center size of retinal ganglion cells. Forty percent of the cells were orientation selective before 2 wk, and the fraction increased to 94% at 4 wk. Cells whose responses could be attenuated to at least half of the maximal response by changes of slit orientation were termed orientation selective. The half-width of the orientation-tuning curves narrowed during the first 5 wk, and this change was most marked in simple cells. The ability of the cells to discriminate between orientations in statistical terms was weak in the youngest kittens due to a large response variability, and showed a more pronounced development than the half-width did. The orientation-tuning curves were fitted by an exponential function, which showed the shape to be adultlike in all age groups. Two kittens were dark reared until recording at 1 mo of age. The spatial receptive-field organization and the orientation selectivity in these kittens were similar to normal-reared kittens at 1 mo. The responsivity of the cells of the dark-reared kittens was lower, and the latency before firing was longer than in the normal-reared kittens of the same age, and these response properties were more similar to those in 1- to 2-wk-old normal kittens. Our results indicate that the spatial organization of the receptive field is innate in most cells and that visual experience is unnecessary for the organization to be maintained and for the receptive-field width to mature during the first month postnatally.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 23 (11) ◽  
pp. 4746-4759 ◽  
Author(s):  
Darragh Smyth ◽  
Ben Willmore ◽  
Gary E. Baker ◽  
Ian D. Thompson ◽  
David J. Tolhurst

2007 ◽  
Vol 97 (1) ◽  
pp. 849-857 ◽  
Author(s):  
Margaret S. Livingstone ◽  
Bevil R. Conway

We measured speed tuning of V1 cells in alert macaques to high- and low-contrast stimuli. Most V1 cells tested, both simple and complex and directional as well as nondirectional, shifted their speed tuning to slower speeds for lower contrast stimuli. We found that the space-time slant of the receptive field of directional simple cells differed for high- and low-contrast stimuli, with the space-time slant predicting higher optimum speeds for the higher-contrast stimuli; i.e., there was a larger spatial shift of the receptive-field organization per unit time. Not only did the space-time maps of directional simple cells show different slants between high- and low-contrast stimuli, but they also showed a different organization, because for high-contrast stimuli, the maps tended to show a complete inversion of the receptive-field spatial organization at long delays after stimulus onset, with initial excitation followed by suppression and initial suppression followed by excitation, but for low-contrast stimuli the receptive-field organization showed only a quadrature shift over time. We show that a simple modification of earlier models for the generation of direction-selective simple cells can account for these observations.


Sign in / Sign up

Export Citation Format

Share Document