simple cells
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 19)

H-INDEX

61
(FIVE YEARS 2)

2021 ◽  
Vol 19 (3) ◽  
pp. 50-60
Author(s):  
A. V. Kugaevskikh

This article is dedicated to modeling the end-stopped neuron. This type of neuron gives the maximum response at the end of the line and is used to refine the edge. The article provides an overview of different models of end-stopped neurons. I have proposed a simpler and more accurate model of an end-stopped neuron based on the use of Gabor filters in antiphase. For this purpose, the models of simple and complex cells whose output is used in the proposed model are also described. Simple cells are based on the use of a Gabor filter, the parameters of which are also described in this article. The proposed model has shown its effectiveness.


2021 ◽  
Author(s):  
Logan Chariker ◽  
Robert Shapley ◽  
Michael Hawken ◽  
Lai-Sang Young

This paper is about neural mechanisms of direction selectivity (DS) in Macaque primary visual cortex, V1. DS arises in V1 layer 4Ca, which receives afferent input from the Magnocellular division of the Lateral Geniculate Nucleus (LGN). LGN itself, however, is not direction-selective. To understand the mechanisms of DS, we built a new computational model (DSV1) of 4Ca. DSV1 is a realistic, large-scale mechanistic model that simulates many V1 properties: orientation selectivity, spatial and temporal tuning, contrast response, and DS. In the model, DS is initiated by the dynamic difference of OFF and ON Magnocellular cell activity that excites the model's layer 4Ca; the recurrent network has no intra-cortical direction-specific connections. In experiments, and in DSV1, most 4Ca Simple cells were highly direction-selective but few 4Ca Complex cells had high DS. Furthermore, the preferred directions of the model's direction- selective Simple cells were invariant with spatial and temporal frequency, in this way emulating the experimental data. The distribution of DS across the model's population of cells was very close to that found in experiments. Analyzing DSV1, we found that the dynamic interaction of feedforward and intra-cortical synaptic currents led to cortical enhancement of DS for a majority of cells. In view of the strong quantitative agreement between DS in data and in model simulations, the neural mechanisms of DS in DSV1 may be indicative of those in the real visual cortex.


2021 ◽  
pp. JN-RM-0928-20
Author(s):  
M. Morgan Taylor ◽  
Diego Contreras ◽  
Alain Destexhe ◽  
Yves Frégnac ◽  
Jan Antolik

2021 ◽  
Vol 17 (3) ◽  
pp. e1007957
Author(s):  
Yanbo Lian ◽  
Ali Almasi ◽  
David B. Grayden ◽  
Tatiana Kameneva ◽  
Anthony N. Burkitt ◽  
...  

There are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally.


2021 ◽  
Author(s):  
Abhishek De ◽  
Gregory D. Horwitz

ABSTRACTColor perception relies on spatial comparisons of chromatic signals, but how the brain performs these comparisons is poorly understood. Here, we show that many V1 neurons compare signals across their receptive fields (RF) using a common principle. We estimated the spatial-chromatic RFs of each neuron, and then measured neural selectivity to customized colored edges that were sampled using a novel closed-loop technique. We found that many double-opponent (DO) cells, which have spatially and chromatically opponent RFs, responded to chromatic contrast as a weighted sum, akin to how simple cells respond to luminance contrast. Other neurons integrated chromatic signals non-linearly, confirming that linear signal integration is not an obligate property of V1 neurons. The functional similarity of DO and simple cells suggests a common underlying neural circuitry, promotes the construction of image-computable models for full-color image representation, and sheds new light on V1 complex cells.


Author(s):  
Abhishek De ◽  
Gregory D Horwitz

The spatial processing of color is important for visual perception. Double-opponent (DO) cells likely contribute to this processing by virtue of their spatially opponent and cone-opponent receptive fields (RFs). However, the representation of visual features by DO cells in the primary visual cortex of primates is unclear because the spatial structure of their RFs has not been fully characterized. To fill this gap, we mapped the RFs of DO cells in awake macaques with colorful, dynamic white noise patterns. The spatial RF of each neuron was fitted with a Gabor function and three versions of the Difference of Gaussians (DoG) function. The Gabor function provided the more accurate description for most DO cells, a result that is incompatible with the traditionally assumed center-surround RF organization. A non-concentric version of the DoG function, in which the RFs have a circular center and a crescent-shaped surround, performed nearly as well as the Gabor model thus reconciling results from previous reports. For comparison, we also measured the RFs of simple cells. We found that the superiority of the Gabor fits over DoG fits was slightly more decisive for simple cells than for DO cells. The implications of these results on biological image processing and visual perception are discussed.


Author(s):  
Sriram G Garg ◽  
Nils Kapust ◽  
Weili Lin ◽  
Michael Knopp ◽  
Fernando D K Tria ◽  
...  

Abstract Metagenomic studies permit the exploration of microbial diversity in a defined habitat and binning procedures enable phylogenomic analyses, taxon description and even phenotypic characterizations in the absence of morphological evidence. Such lineages include asgard archaea, which were initially reported to represent archaea with eukaryotic cell complexity, although the first images of such an archaeon show simple cells with prokaryotic characteristics. However, these metagenome-assembled genomes (MAGs) might suffer from data quality problems not encountered in sequences from cultured organisms due to two common analytical procedures of bioinformatics: assembly of metagenomic sequences and binning of assembled sequences on the basis of innate sequence properties and abundance across samples. Consequently, genomic sequences of distantly related taxa, or domains, can in principle be assigned to the same MAG and result in chimeric sequences. The impacts of low-quality or chimeric MAGs on phylogenomic and metabolic prediction remain unknown. Debates that asgard archaeal data are contaminated with eukaryotic sequences are overshadowed by the lack of evidence indicating that individual asgard MAGs stem from the same chromosome. Here we show that universal proteins including ribosomal proteins of asgard archaeal MAGs fail to meet the basic phylogenetic criterion fulfilled by genome sequences of cultured archaea investigated to date: these proteins do not share common evolutionary histories to the same extent as pure culture genomes (PCGs) do, pointing to a chimeric nature of asgard archaeal MAGs. Our analysis suggests that some asgard archaeal MAGs represent unnatural constructs, genome-like patchworks of genes resulting from assembly and/or the binning process.


2020 ◽  
Vol 295 (39) ◽  
pp. 13584-13600 ◽  
Author(s):  
Nathan Nguyen ◽  
Taryn J. Olivas ◽  
Antonio Mires ◽  
Jiaxin Jin ◽  
Shenliang Yu ◽  
...  

During autophagy, LC3 and GABARAP proteins become covalently attached to phosphatidylethanolamine on the growing autophagosome. This attachment is also reversible. Deconjugation (or delipidation) involves the proteolytic cleavage of an isopeptide bond between LC3 or GABARAP and the phosphatidylethanolamine headgroup. This cleavage is carried about by the ATG4 family of proteases (ATG4A, B, C, and D). Many studies have established that ATG4B is the most active of these proteases and is sufficient for autophagy progression in simple cells. Here we examined the second most active protease, ATG4A, to map out key regulatory motifs on the protein and to establish its activity in cells. We utilized fully in vitro reconstitution systems in which we controlled the attachment of LC3/GABARAP members and discovered a role for a C-terminal LC3-interacting region on ATG4A in regulating its access to LC3/GABARAP. We then used a gene-edited cell line in which all four ATG4 proteases have been knocked out to establish that ATG4A is insufficient to support autophagy and is unable to support GABARAP proteins removal from the membrane. As a result, GABARAP proteins accumulate on membranes other than mature autophagosomes. These results suggest that to support efficient production and consumption of autophagosomes, additional factors are essential including possibly ATG4B itself or one of its proteolytic products in the LC3 family.


2020 ◽  
Author(s):  
Yanbo Lian ◽  
Ali Almasi ◽  
David B. Grayden ◽  
Tatiana Kameneva ◽  
Anthony N. Burkitt ◽  
...  

AbstractThere are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally.Author summaryMany cortical functions originate from the learning ability of the brain. How the properties of cortical cells are learned is vital for understanding how the brain works. There are many models that explain how V1 simple cells can be learned. However, how V1 complex cells are learned still remains unclear. In this paper, we propose a model of learning in complex cells based on the Bienenstock, Cooper, and Munro (BCM) rule. We demonstrate that properties of receptive fields of complex cells can be learned using this biologically plausible learning rule. Quantitative comparisons between the model and experimental data are performed. Results show that model complex cells can account for the diversity of complex cells found in experimental studies. In summary, this study provides a plausible explanation for how complex cells can be learned using biologically plausible plasticity mechanisms. Our findings help us to better understand biological vision processing and provide us with insights into the general signal processing principles that the visual cortex employs to process visual information.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba3742 ◽  
Author(s):  
Giulio Matteucci ◽  
Davide Zoccolan

Unsupervised adaptation to the spatiotemporal statistics of visual experience is a key computational principle that has long been assumed to govern postnatal development of visual cortical tuning, including orientation selectivity of simple cells and position tolerance of complex cells in primary visual cortex (V1). Yet, causal empirical evidence supporting this hypothesis is scant. Here, we show that degrading the temporal continuity of visual experience during early postnatal life leads to a sizable reduction of the number of complex cells and to an impairment of their functional properties while fully sparing the development of simple cells. This causally implicates adaptation to the temporal structure of the visual input in the development of transformation tolerance but not of shape tuning, thus tightly constraining computational models of unsupervised cortical learning.


Sign in / Sign up

Export Citation Format

Share Document