Mouse adrenal chromaffin cells can transform to neuron-like cholinergic phenotypes after being grafted into the brain

1993 ◽  
Vol 274 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Maria Jousselin-Hosaja ◽  
Philippe Mailly ◽  
Shigeru Tsuji
1988 ◽  
Vol 116 (1) ◽  
pp. 149-NP ◽  
Author(s):  
M. Jousselin-Hosaja

ABSTRACT The effects of long-term transplantation on the ultrastructure of adrenaline- and noradrenaline-storing cells from the adrenal medulla were determined using morphometric methods. Mouse adrenal medulla were freed from the adrenal cortex and grafted into the occipital cortex of the brain. Two types of chromaffin cells were identified by electron microscopy in grafts fixed with glutaraldehyde and osmium tetroxide. Noradrenaline-type cells were predominant and formed 70–80% of the surviving population of grafted chromaffin cells. A minority of the chromaffin cells contained medium-sized granules (140–210 nm in diameter) (medium granule cell; MGC) with finely granular moderately electron dense cores. Morphometric analysis of noradrenaline phenotype cells and MGC cells in transplants showed no significant differences compared with the noradrenaline-storing cells of normal adrenal glands. In contrast, noradrenaline-type cells and MGC cells in the grafts had areas of secretory vesicles which were significantly (P<0·01) larger and areas of rough endoplasmic reticulum which were significantly (P<0 ·01) smaller than those of the adrenaline-storing cells of normal adrenal glands. It was concluded that long-term transplantation caused no degenerative changes in the ultrastructure of mouse adrenal chromaffin cells. J. Endocr. (1988) 116, 149–153


Author(s):  
Joe A. Mascorro ◽  
Robert D. Yates

Extra-adrenal chromaffin organs (abdominal paraganglia) constitute rich sources of catecholamines. It is believed that these bodies contain norepinephrine exclusively. However, the present workers recently observed epinephrine type granules in para- ganglion cells. This report investigates catecholamine containing granules in rabbit paraganglia at the ultrastructural level.New Zealand white rabbits (150-170 grams) were anesthetized with 50 mg/kg Nembutal (IP) and perfused with 3% glutaraldehyde buffered with 0.2M sodium phosphate, pH 7.3. The retroperitoneal tissue blocks were removed and placed in perfusion fluid for 4 hours. The abdominal paraganglia were dissected from the blocks, diced, washed in phosphate buffer and fixed in 1% osmic acid buffered with phosphate. In other animals, the glutaraldehyde perfused tissue blocks were immersed for 1 hour in 3% glutaraldehyde/2.5% potassium iodate buffered as before. The paraganglia were then diced, separated into two vials and washed in the buffer. A portion of this tissue received osmic acid fixation.


1997 ◽  
Vol 73 ◽  
pp. 226
Author(s):  
Kazuo Minakuchi ◽  
Hitoshi Houchi ◽  
Masanori Yoshizumi ◽  
Yasuko Ishimura ◽  
Kyoji Morita ◽  
...  

1992 ◽  
Vol 284 (2) ◽  
pp. 321-326 ◽  
Author(s):  
G Ahnert-Hilger ◽  
U Wegenhorst ◽  
B Stecher ◽  
K Spicher ◽  
W Rosenthal ◽  
...  

1. In bovine adrenal chromaffin cells made permeable either to molecules less than or equal to 3 kDa with alphatoxin or to proteins less than or equal to 150 kDa with streptolysin O, the GTP analogues guanosine 5′-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5′-[gamma-thio]triphosphate (GTP[S]) differently modulated Ca(2+)-stimulated exocytosis. 2. In alphatoxin-permeabilized cells, p[NH]ppG up to 20 microM activated Ca(2+)-stimulated exocytosis. Higher concentrations had little or no effect. At a free Ca2+ concentration of 5 microM, 7 microM-p[NH]ppG stimulated exocytosis 6-fold. Increasing the free Ca2+ concentration reduced the effect of p[NH]ppG. Pretreatment of the cells with pertussis toxin prevented the activation of the Ca(2+)-stimulated exocytosis by p[NH]ppG. 3. In streptolysin O-permeabilized cells, p[NH]ppG did not activate, but rather inhibited Ca(2+)-dependent catecholamine release under all conditions studied. In the soluble cytoplasmic material that escaped during permeabilization with streptolysin O, different G-protein alpha-subunits were detected using an appropriate antibody. Around 15% of the cellular alpha-subunits were detected in the supernatant of permeabilized control cells. p[NH]ppG or GTP[S] stimulated the release of alpha-subunits 2-fold, causing a loss of about 30% of the cellular G-protein alpha-subunits under these conditions. Two of the alpha-subunits in the supernatant belonged to the G(o) type, as revealed by an antibody specific for G(o) alpha. 4. GTP[S], when present alone during stimulation with Ca2+, activated exocytosis in a similar manner to p[NH]ppG. Upon prolonged incubation, GTP[S], in contrast to p[NH]ppG, inhibited Ca(2+)-induced exocytosis from cells permeabilized by either of the pore-forming toxins. This effect was resistant to pertussin toxin. 5. The p[NH]ppG-induced activation of Ca(2+)-stimulated release from alphatoxin-permeabilized chromaffin cells may be attributed to one of the heterotrimeric G-proteins lost during permeabilization with streptolysin O. The inhibitory effect of GTP[S] on exocytosis is apparently not mediated by G-protein alpha-subunits, but by another GTP-dependent process still occurring after permeabilization with streptolysin O.


2008 ◽  
Vol 107 (3) ◽  
pp. 658-667 ◽  
Author(s):  
Chien-Yuan Pan ◽  
Ling-Ling Tsai ◽  
Jhih-Hang Jiang ◽  
Lih-Woan Chen ◽  
Lung-Sen Kao

Sign in / Sign up

Export Citation Format

Share Document