Temporal adaptations in visual systems of deep-sea crustaceans

1995 ◽  
Vol 123 (1) ◽  
pp. 47-54 ◽  
Author(s):  
J. F. Moeller ◽  
J. F. Case
Keyword(s):  
Deep Sea ◽  
2017 ◽  
Vol 372 (1717) ◽  
pp. 20160071 ◽  
Author(s):  
Tamara M. Frank

For all visually competent organisms, the driving force behind the adaptation of photoreceptors involves obtaining the best balance of resolution to sensitivity in the prevailing light regime, as an increase in sensitivity often results in a decrease in resolution. A number of marine species have an additional problem to deal with, in that the juvenile stages live in relatively brightly lit shallow (100–200 m depth) waters, whereas the adult stages have daytime depths of more than 600 m, where little downwelling light remains. Here, I present the results of electrophysiological analyses of the temporal resolution and irradiance sensitivity of juvenile and adult stages of two species of ontogenetically migrating crustaceans ( Gnathophausia ingens and Systellaspis debilis ) that must deal with dramatically different light environments and temperatures during their life histories. The results demonstrate that there are significant effects of temperature on temporal resolution, which help to optimize the visual systems of the two life-history stages for their respective light environments. This article is part of the themed issue ‘Vision in dim light’.


2020 ◽  
pp. jeb.233098
Author(s):  
Fanny de Busserolles ◽  
Fabio Cortesi ◽  
Lily Fogg ◽  
Sara M. Stieb ◽  
Martin Luehrmann ◽  
...  

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim-light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.


2020 ◽  
Author(s):  
Fanny de Busserolles ◽  
Fabio Cortesi ◽  
Lily Fogg ◽  
Sara M. Stieb ◽  
Martin Luerhmann ◽  
...  

AbstractThe visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual systems of the coral reef fish family Holocentridae (squirrelfish and soldierfish). In addition to their nocturnality, this family is particularly interesting for dim-light vision studies due to its ecological and evolutionary connection to deeper habitats. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim-light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae having a slightly more developed photopic visual system than Myripristinae. Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of multibank retina and its potential for dim-light colour vision.


Sarsia ◽  
2003 ◽  
Vol 88 (4) ◽  
pp. 297-301 ◽  
Author(s):  
Guerra A. ◽  
Rocha F. ◽  
A. F. González
Keyword(s):  

1991 ◽  
Vol 36 (1) ◽  
pp. 82-82
Author(s):  
No authorship indicated

Nature ◽  
2006 ◽  
Author(s):  
Emma Marris
Keyword(s):  

1920 ◽  
Vol 123 (6) ◽  
pp. 126-127
Author(s):  
Robert G. Skerrett
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document