The use of lightweight Unmanned Aerial Vehicle with the aerial photogrammetry approach to construct the Digital Surface Model (DSM) has been effectively applied for various types of topography. However, the ability to carry out this approach for huge active open coal mines is insufficiently investigated, furthermore, the influences of topographical factors on the accuracy of DSM are ambiguous. This experiment attempts to apply the UAV method for the two active coal mines with the total area of 7.99 km2 , exploited at a range from -300 m to 300 m altitude to figure out the effect of topographic factors on the accuracy of DEM constructed from UAV images. A total of 972 UAV images and 17 ground control points have been coupled to construct DSM of the mines. Besides, 16 checking points located at different elevations are used to evaluate the accuracy of DEM and to define the influence. DEMs are generated with the maximum RMSE of 0.086 m, 0.099 m, and 0.170 m corresponding to X, Y, and Z dimensional errors. The results show the unclear correlation between the vertical accuracy of DEM and the relative elevation (R2=0.064), the general slope of the mines, and the number of ground control points using in the coal mines as well.